Saving Forests from the Demand Side

Invited remarks by Amory B Lovins Co-CEO (Research), Rocky Mountain Institute 1739 Snowmass Creek Road, Snowmass CO 81654-9199, USA 1 970 + 927-3851, FAX -4178, www.rmi.org, ablovins@rmi.org

to the Forest Visions and Transitions Workshop World Resources Institute, Washington DC, 28 June 1999

Including summaries of findings of a working group of the Systems Group on Forests (RMI, 1995–98, to be published ~1999) and of research by Chris Lotspeich *et al.* documented in *Natural Capitalism* (P G Hawken, A B Lovins, & L H Lovins, 9/99)

Copyright © Rocky Mountain Institute 1999

All rights reserved; free and unlimited reproduction for noncommercial purposes licensed to WRI and participants

Water withdrawn for U.S. use: declining since 1980 despite rising population (dashed line)

What goes up can come down

- US primary energy/GDP –36% so far: saved \$150–200b/y, still wasting >\$300b/y
- US 1979–86: GDP +19%, pri energy –6%
- US resumed a comparable (3.2%/y) rate of savings in 1996–99 despite record low & falling prices
- US is saving water twice as fast as energy: in CA, industrial output in '80s +30%, water withdr –30%
- Even driving/car may stabilize/fall (many reasons)
- Oil endgame now beginning—likely to become uncompetitive even at low prices before unavail-able even at high prices; a precedent for wood?

Will alternatives exhibit diminishing returns...

... or expanding returns?

By 2050, an affluent world could meet or beat a $3-4 \times C$ reduction goal

 $C_{energy} = \frac{22}{population \times affluence \ per \ capita \times carbon \ intensity}{conversion \ eff. \times end - use \ eff. \times hedonic \ eff.}$ $\times 1.5 \times 4-6 \times 1-2?$

or ~1.5– $12 \times lower$ emissions despite assumed 6– $8 \times$ growth in GWP. (A 1993 UN study* found 1.35× and 8× respectively, 1985–2050.) Great flexibility is thus available. *The future is not fate but choice*.

*Johansson, Kelly, Reddy, Williams, & Burnham, *Renewable Energy*, 1177 pp., Island Press, Washington DC. This analysis, though mostly excellent on the supply side, assumed relatively weak end-use efficiency opportunities.

What causes the extractive demand upon natural forests?

In a "snapshot" at a given moment, and ignoring important differences between and within societies, it results from seven terms, all of which are not fate but choice, *each* of which can be increased or decreased, and some of which may interact with each other:

human	× per-capita	× portion of	× throughput	÷ efficiency of	÷ efficiency of	÷ efficiency of	÷ efficiency of
population	demand for	that service de-	of forest prod-	converting	converting	converting inter-	converting end-
	end-use ser-	mand that	ucts needed t o	forests into	forest products	mediate goods	use services into
	vices now	would be ac-	maintain the	forest products	into intermedi-	into end-use serv-	human happi-
	provided by	tually provided	desired stock	(<i>e.g.</i> , round-	ate goods (e.g.,	ices (shelter, in-	ness and
	1 2	by forest prod-		wood, market	dimensional	formation,	satisfaction
	facts made	ucts after sub-	artifacts	pulp, fuel-	lumber, paper,	cooked food,)	
	from forest	stituting other		wood)	fuel)		
	products	means					
influenced	prices	1		where/when to	U	e.g.: engineered	e.g., less junk
by:	progress	or "noticeable"	design	log	transport loss	wall (better,	mail, higher-
	metrics	substitutions	net-shape de-		processing loss	–74% wood,	quality servi-
family	values	substitutions at	0	practices	storage loss	lower-quality	ces, more
planning	what do we			field loss	spoilage	wood);	wanted and
gender roles	want?	functionality,	longevity	transport loss		duplex copying,	fewer unwant-
social	how much is	materials, pur-	-	storage loss	(production/	electronics, nega-	ed services,
welfare	enough?	pose,	remanufact'g.	spoilage		information;	meeting non-
land tenure	equity	possibly +/- in	• •	processing loss	matches, re-		material needs
social norms		other respects	downcycling		turns,)	& pots, effective	by nonmaterial
religious	religious and		recovery as			solar cookers	means,
doctrines	moral		feedstock or				sufficiency
	norms		fuel				
long-term	unknown,	much, perhaps	at least	significant to	significant to	severalfold to	?
flexibility:	possibly	most, of current	severalfold	manyfold	manyfold	manyfold	
~2×	severalfold	demand					

so the flexibility terms multiply to 1–3 orders of magnitude, mostly from technical fixes!

ABL 6xi00

With a few qualifications...

- Formula is heuristic, not exhaustive
 - *E.g.*, omits such indirect methods as saving forests by using electricity more efficiently instead of flooding forests for hydroelectric dams
 - Ignores complex price & physical interactions
 - Omits other pressures (clearance, fuels, roads, land tenure, social complexities,...)
- Some ambiguities about where a term should go (just count it once and only once)
- Still useful, because it emphasizes many multiplicative options, starting downstream

Some nifty forest-products numbers

- Fiber usually a small fraction of total societal value
- Noncommercial uses (fuelwood) and complex sociopolitical and land-use issues often important
- U.S. fiber harvest mass is $>2\times$ metals purchases
- Produces ~half paper/paperboard (fast-growing markets), ~half lumber at ~2–5× higher prices/m³
- Paper is 2% of world trade, $2^{1/2}$ % of ind. prodn.
 - U.S. shipments \$132b/y, ~pri. metals/minerals, ~0.9× petrochemicals; ~90% of usage ephemeral, not archival
- 20th-C. US fiber/cap -2.5%/y: GDP × 6, use ×<2
- 5 SGF case-studies found ~75–80% fiber savings
- Biggest leverage starts all the way *downstream*

Compounding losses...or savings

Electrons for fiber, pixels for paper

- Hard disks sell for a few ¢ per ream-equivalent
- Paperless office: strong cultural barrier, big gains
 - 29% of paper/p'bd; 5 sheets/cap-h, 100–200 lb/cap-y
- "Nega-information": paper saving as byproduct
 - Dow/Horgen: -30% in 6 weeks, productivity up more
 - Oticon –30–50%, byproduct of better decisionmaking
- Increasing innovations: BoA syndications (pot'l. 5M sheets/y), optical phonebooks / parts catalogs / *PDR*, web publications (a Sunday *NY Times* uses 75,000 trees; newsprint is 1/6 of US paper usage)

Dematerializing paper

- Reduced basis weight, higher opacity
- Improved strength/weight cut av. basis wt of US bleached paperboard (packaging) by ~1/5 in 10 y
- Johnson & Johnson: 30-mo effort saved (/y) 2750 t packaging, 1600 t paper, \$2.8M, 134+ ha forest
- Eliminate overdesign in packaging (which is the largest US/UK use of paper products; 1/3 of W Eur muni waste, 2/5 of volume into US landfills)
 - 20–50% short-term reductions
 - Big Ger. retailer: 98% of secondary pkg'g unneeded
 - Canada's goal: 25% packaging reduction 1990–2000

Start downstream for greatest leverage

- Functional efficiency
 - Negainfo., no junk mail (1.5 trees/American-y)
 - WYSIWYG, preview, groupware, E-mail,....
 - -58% paper napkins by putting dispenser at the table
 - 2b people won't need phone poles (PV + wireless)
- Then end-use efficiency
 - Duplexing (partial use saved AT&T 15% of paper bill)
 - Fax-address stickies, not cover sheets
 - Returnable envelopes save 60–70% of envelope paper
 - Barcoding (esp. 2-D) replaces dossiers
 - E-mail (now >10 trillion words/y)
 - Technology does matter: forms bond stopped growing (US '94–2000 proj'd 0.1%/y *vs* uncoated freesheet 3.9)

Next, work back all the way upstream

- Then reduce new-materials dependence
 - Reuse the back for drafts/notes
 - Lower-basis-weight paper (EDF –23%, transp, postage)
 - "Detoner" printers/copiers emerging in US & Japan
 - Recycling (saves 1/2 energy = oil w/ 1/2 paper's mass)
- Then substitute nonwood fiber
 - Some is higher-quality and m^3 /ha-y than wood fiber
 - Nonwood paper 6%, growing 3× faster; ~80% in PRC
 - Avail. US ag. wastes (>280 Mt/y) ~ total US wood harv.
 - 10% straw to agropulp boosts OR farm profits 25–50%
- Then conversion efficiency (many small terms)
- Then field efficiency ($\sim 5-6 \times \text{ diffs. observed}$)

Multiplying savings like loaves and fishes

- Combinations can be powerful
 - Pará (Brazil): 28% better harvesting practice + raising sawmill eff. from 35% to 50% (*cf.* USSE 60%, best 70–80%) yields same net out, harvesting 45% less forest
 - If Brazil's sawmills matched best Japanese, field practice improved, & expected 2–3× gains in tree growth occurred, 60–83% fewer ha would deliver same output
 - If each of 10 elements in each of 8 terms saves only 2%, their combined effect is 0.98⁸⁰, or an 80% saving!
- Harvesting 5–20% of standing tropical trees can damage a further ~20–50% of surrounding trees & soil, esp. small trees vital to stand regen.; reverse it!

An example of multiplying paper savings

- × 0.90: E-mail, curbing unwanted printouts
- \times 0.50: duplexing, scratchpaper reuse,...
- × 0.95: pulp-mill process/eq't upgrades
- \times 0.2: softwood plantations for unmgd forest
- $\times 0.75$: 60- to 45-lb basis wt, better opacity
- \times 0.60: supplemental nonwood fiber + recyc.
- If no boomerangs, product is × 0.04—a 96% saving (or w/o switch to plantations, × 0.19)
- Many of these assumptions are conservative

Structural applications

- Engineered wood products (*e.g.*, TrusJoist Mac-Millan's "Parallam") have ~1.8–2.4× product yield per m³ fiber; use softer, smaller, lower-quality trees
- Even greater efficiency in structural performance
 - EWP I-joists w/44% less fiber—even more because no internal load-bearing walls are needed, higher space eff.
 - EWP framing system saved 70–74% of wood in studwall, wood/wall 0.35 to 0.09, -\$433, 2× insul'n, stronger
- Fingerjointing yields 500–700 bd-ft/t wood "waste"
- Glue 4–5" logs' trapezoidal blocks into thick boards
- Novel 1-beam joists, big hollow beams,...
- Bellcomb, Gridcore (-75-85%), C-Glulams (-67%)

Close materials loops

- Pallets use 11% of U.S. lumber, 2/5 of hardwood
 - 1.5b in U.S. (6/cap), + 0.4b/y; waste/y = 300k homes
 - Many firms repackage, reduce pallets/t shipped (to 0?)
 - Remfg: NYC \$130M/y disposal cost; but Big City Forest recovered 50k pallets + furniture in first 20 mo, saving 1,500 t wood (>1M bd-ft) + \$500k
 - RAN: 50% remfg = 2,500 inner-city jobs + 765M bdft/y = 152k acres timberland
 - German barcoding incentivizes durability, reuse, repair
- Paper: U.S. recyc. > landfill since '93; nearing 50% of inputs (vs. 96% NL), but 20 Mt/y wastewood, equivalent to 7% of harvest, still landfilled
- USNW: 1948–73 mill products/ha ×4, residues ÷4!

Process innovations continue

- Green Bay Packaging Co (WI banned paper from landfills in '95) eliminated effluent from all-recycled paperboard, so could locate far from water
 - Goal: national network of regional minimills
 - Raised fiber recovery from 85–90% to 97–98%, equivalent to avoiding landfilling another 20kt/y
 - Became industry's low-cost producer
- Recycle copiers (10×), Decopier (5×), polymeric ink (floats off in 55°C water, 10–13× paper life)
- E-paper (>1M trips) soon from Xerox PARC, MIT

With superefficient use, no forest cut?

- Sedjo: current world demand for industrial wood fiber (excl. fuelwood, slightly greater) could come from plantations on good forest land (8 m³/ha-y: 2× av. US prod'y, 4-6× below fast-growing spp) equivalent to 5% of the world's currently forested land
- Very-high-yield plantations (40–70 m³/ha-y) on 0.5–1% of current forest areas (23–40 Mha: *cf*. current plantations' 100–135, high-yield 14) could meet world wood-fiber demand @ current efficiency
- Improving downstream efficiency 3–5× in long run (prob. conservative) could cut this to ~0.1–0.3%, the size of Louisiana or Iowa—about the area of tropical forest being *lost each year* in early 1990s

Conclusions

- The innovations illustrated by these anecdotal examples, and the far larger potential still unexploited, suggest that efficiency and substitution in all forest-product value chains can profitably displace most/all cutting of natural forests, w/same services
- *Thorough* analysis is needed, including interactions (best protection against rebound: save everywhere)
- This cornucopia is the manual model!
- Some non-fiber values (C, watershed, tourism,...) are starting to be monetized; even in NZ's exotic softwoods, they're worth ~1.5× as much as fiber, which has ~6× av. US natural forests' yield/ha-y

But more juicy questions remain...

- Can saving wood fiber tunnel through cost barrier?
- What would full desubsidization really mean?
- What "barrier-busting" initiatives* can turn implementation obstacles into business opportunities?
- Ga.-Pacific CEO's remark about eco-accounting should there be a major FASB/GAAP initiative?
- Business value of biodiversity—even to loggers
- Can Collins Pine's premium be generalized?
- What would make alts. clearly *more* profitable? (Example: Oil Era will end bec. it can't compete)
- Change business model to a Solutions Economy?

*See A B & L H Lovins, *Climate: Making Sense* and *Making Money*, RMI, 9/97, www.rmi.org/catalog/climate.htm, pp. 11ñ20.

To dig deeper...

- All RMI publications can be ordered, and many can be downloaded free, from www.rmi.org
- Publications related to Hypercars (a nega-OPEC), fuel cells, and H_2 are at www.hypercar.com
- Advanced energy efficiency information is sold at www.esource.com (a former RMI subsidiary)
- Natural Capitalism has >400 pp. & >800 refs., and will have its own part of the www.rmi.org website by ~9/99 when the book is published by Little Brown (NY) and Earthscan (London)