Table of Contents

EXECUTIVE SUMMARY ... 3
THE NET ZERO RENOVATION CHALLENGE .. 3
OVERVIEW OF THE WORKSHOP .. 3
HIGH PRIORITIES ... 4
NEXT STEPS ... 5
SUMMARY OF THE GSA NET ZERO RENOVATION CHALLENGE ... 6
FEDERAL REQUIREMENTS FOR GSA BUILDINGS .. 6
APPROACH TO NET ZERO ... 7
DEFINITION OF NET ZERO ... 7
THE PATHWAY TO NET ZERO STARTS WITH EFFICIENCY ... 7
 Right Steps in the Right Order ... 8
 Goal Setting – Striving Towards the Theoretical Minimum ... 8
 Integrative Design and Analysis ... 9
 Collaboration Among Stakeholders ... 9
 Tenant/Occupant Engagement ... 9
 Right Timing the Retrofit .. 10
BALANCING EFFICIENCY WITH RENEWABLE ENERGY .. 10
TECHNOLOGIES TO ACHIEVE DEEP ENERGY SAVINGS .. 10
BARRIERS TO DEEP RETROFITS AND PROPOSED SOLUTIONS ... 11
ANALYSIS AND INTEGRATIVE DESIGN .. 11
PROJECT ECONOMICS .. 12
ESPC DELIVERY PROCESS AND PROCUREMENT .. 13
OCCUPANT BEHAVIOR CHANGE .. 14
MEASUREMENT AND VERIFICATION .. 15
ACTION ITEMS AND NEXT STEPS .. 16
APPENDICES: ... 18
APPENDIX A: ATTENDEE FEEDBACK: “WHAT ONE CHANGE WOULD YOU MAKE?” 18
APPENDIX B: ADDITIONAL BARRIERS AND SOLUTIONS FOR ACHIEVING NET ZERO RENOVATIONS ... 19
APPENDIX C: GLOSSARY OF TERMS AND ACRONYMS .. 22
APPENDIX D: PRESENTATIONS FROM CHARRETTE (ATTACHED IN A SEPARATE FILE) 26
APPENDIX E: PRE-READ: INCLUDES CHARRETTE OVERVIEW, AGENDA, ATTENDEES, CASE STUDIES, PRESS RELEASE AND EXPEDITED ESPC DELIVERY TIMELINE (ATTACHED IN A SEPARATE FILE) 26
Executive Summary

The General Services Administration (GSA), Office of Federal High Performance Green Buildings (OFHPGB) and the Federal Energy Management Program (FEMP) have launched an effort to enhance and increase the usage of Energy Savings Performance Contracts (ESPCs) on GSA buildings. This effort is centered on the Net Zero Renovation Challenge (the Challenge), which will pave the way for increased energy savings working towards net zero energy projects delivered through ESPCs.

Rocky Mountain Institute (RMI) and GSA convened a workshop at RMI offices in Boulder, Colorado on October 27th and 28th, 2011. The goal of the workshop was to examine the existing ESPC structure and process, and identify improvements to unlock the possibility of deep savings and eventual net zero ESPCs. Workshop attendees included representatives from the 16 ESCOs qualified under FEMP’s ESPC IDIQ contract, GSA, DOE and DOD and we examined ways to modify and expand the ESPC process to attain deeper energy savings during comprehensive retrofits of existing buildings. GSA introduced the Net Zero Renovation Challenge, and then the group brainstormed current barriers and possible solutions to achieve greater savings on ESPC projects.

GSA, DOE and DOD seek to identify ways to improve the ESPC process and expand use of ESPCs to finance installation of energy saving technologies and practices in existing buildings. The lessons learned during the charrette and through the outcomes of the challenge will help to identify structural, contractual and technical impediments and will result in change in procurement practice; in budget practice; in measurement; in fee structures. Other countries have achieved 95% savings upon 10-year terms, we believe 75% savings are achievable – with today’s technology.

The Net Zero Renovation Challenge

The Net Zero Energy Renovation Challenge will use 30-35 GSA buildings across the country as demonstration projects for deep savings from ESPCs. GSA invites all of the 16 FEMP prequalified ESCOs to participate and create plans to bring the buildings to net zero energy. A team of independent experts will assess awards for the challenge based on criteria in six main categories: absolute energy savings, progress towards Energy Independence and Security Act 2007 (EISA)/GSA goals, financial creativity, technical creativity, replicability/applicability, and design process and analysis. The overall winning project teams will be considered for additional work provided by GSA (with some other awards being given for winners of individual categories). GSA launched the Challenge in early August 2011 and will announce the buildings before the end of the year. GSA will award and implement the projects over the next two years. For the Challenge, it is not anticipated that there will be any additional appropriated funding available.

The goal, simply put, is to achieve maximum savings possible with no technological limits.

Overview of the Workshop

The one-and-a-half-day workshop focused on enabling deep energy savings through ESPCs. On the first day, GSA introduced the Challenge and RMI shared expertise and case studies on achieving deep energy savings in retrofits. During a working lunch, a representative from the National Renewable Energy Laboratory (NREL) discussed the role renewable energy systems play in achieving net zero energy through case studies, tools and technologies, bundling, and potential difficulties. FEMP followed that with a presentation on underutilized energy conservation measures. During the afternoon, attendees divided into five groups...
and addressed barriers and potential solutions in the following topic areas: Analysis and Integrative design, Project Economics, ESPC Delivery Process and Procurement, Occupant Behavior and Workplace Culture, and Measurement and Verification (M&V). On the second and final day of the workshop, attendees discussed in depth each of the breakout groups’ key conclusions. GSA concluded the day with a more detailed explanation of the Challenge and next steps.

The workshop was a collaborative and transparent environment that enabled very candid input from the ESCOs and reactions and commitment from GSA. Momentum for the Challenge was high and both the ESCOs and GSA alike are enthusiastic about the possibilities. Input indicates that ESPC projects could fairly easily and consistently double the amount of typical savings achieved from 20% to >40%.

High Priorities

Some of the most prevalent themes from the workshop are summarized below. These were identified in a session where each attendee responded to a question asking for the single most impactful thing that could improve the process to enable deeper retrofits. The opportunities were supported and expanded upon in the break out groups.

<table>
<thead>
<tr>
<th>Opportunities for Deep Retrofits</th>
<th>Proposed Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time is money. By reducing/streamlining the ESCO award process (currently 18 months on average), GSA can get to savings sooner, reduce costs to ESCOs and add 20-30% from savings to project budgets.</td>
<td>GSA and FEMP intend to expedite the process of ESCO selection based on the experiences of the Challenge – targeting 30 days for selection and 8 months for award.</td>
</tr>
<tr>
<td>Shared risk between the ESCO and the agency would enable deeper savings from ESPCs</td>
<td>Certain risk sharing between parties and/or policy changes to encouraged reduced interest rates for available financing would lower project costs and make greater energy savings more viable. Combining appropriated funding for designated projects with ESPCs could lead to bigger savings, more robust projects and better buildings overall.</td>
</tr>
<tr>
<td>Redefine or clarify eligible savings, particularly as it relates to O&M and avoided capital costs.</td>
<td>Including avoided capital and maintenance costs (even over just 1-2 years in the future) can increase project financing. Clear and consistent guidance from GSA on what the ESPC can include is necessary.</td>
</tr>
<tr>
<td>ESCOs very rarely guarantee occupant behavior energy use reduction – largely because the savings from an occupant behavior program are hard to quantify and verify.</td>
<td>ESCOs could incorporate occupant behavior savings into bundles (through the implementation of each measure) instead of as a stand-alone measure. Solutions to share risk, or incentives for ESCOs to over-perform would encourage the inclusion of occupant behavior. These energy reductions can either be explicitly measured (as a measure or part of a bundle) or included in other relevant measures by stipulating energy savings and the implementation of occupant engagement.</td>
</tr>
<tr>
<td>For broader uptake of the ESPC process, the GSA program should support aggregated, multi-building projects.</td>
<td>Bundling of ESPC projects (and associated financing) could lower overhead, implementation, and financing costs and could make more measures viable.</td>
</tr>
<tr>
<td>Uncertainty with M&V stems from the operation of the building after installation.</td>
<td>One option is to treat operations and maintenance (O&M) as a part of a bundle (additional savings are often possible – and can improve project financials) and assign responsibility to the ESCO – to oversee the existing O&M contractor.</td>
</tr>
</tbody>
</table>
Next Steps

The workshop provided a good platform to understand and prioritize the challenges and solutions to make the Net Zero Renovation Challenge a success. Next steps for the Net Zero Renovation Challenge include the following:

<table>
<thead>
<tr>
<th>#</th>
<th>Task</th>
<th>Timeline</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GSA to schedule call with all ESCOs to review</td>
<td>The week of December 12th, 2011</td>
</tr>
<tr>
<td>2</td>
<td>GSA will issue the Notice of Opportunity (NOO) (including list of buildings)</td>
<td>January 2012</td>
</tr>
<tr>
<td>3</td>
<td>ESCOs respond to NOO with interest, approach and preferred buildings</td>
<td>February 2012</td>
</tr>
<tr>
<td>4</td>
<td>GSA assigns buildings to ESCOs</td>
<td>March 2012</td>
</tr>
<tr>
<td>5</td>
<td>ESCOs perform IGA</td>
<td>April-July 2012</td>
</tr>
<tr>
<td>6</td>
<td>Contracts awarded</td>
<td>August 2012</td>
</tr>
</tbody>
</table>
Summary of the GSA Net Zero Renovation Challenge

The General Services Administration (GSA), Office of Federal High Performance Green Buildings (OFHPGB) and the Public Buildings Service (PBS) seek to identify ways to improve the Energy Savings Performance Contract (ESPC) process and expand use of ESPCs to finance installation of energy saving technologies and practices in existing buildings.

The Net Zero Energy Renovation Challenge will use 30-35 GSA/PBS buildings across the country as demonstration projects for deep savings from ESPCs. GSA invites all of the 16 FEMP prequalified ESCOs to participate and create plans to bring the buildings to net zero energy. A team of independent experts will assess awards for the challenge based on criteria in six main categories: absolute energy savings, progress towards Energy Independence and Security Act 2007 (EISA)/GSA goals, financial creativity, technical creativity, replicability/applicability, and design process and analysis. The overall winning project teams will be considered for additional work provided by GSA (with some other awards being given for winners of individual categories). GSA launched the Challenge in early August 2011 and will announce the buildings before the end of the year. GSA will award and implement the projects over the next two years. For the Challenge, it is not anticipated that there will be any additional appropriated funding available.

Federal Requirements for GSA Buildings

Federal agencies are subject to numerous energy reduction requirements. Today, 97% of GSA’s greenhouse gas (GHG) emissions come from energy consumption in federal buildings and leased space. The Energy Independence and Security Act of 2007 (EISA 2007) mandates all federal agencies to reduce facility energy intensity to 49 kBTU/gsf by 2020. This equates a 37.5% reduction from the FY 2003 baseline of 78 kBTU/gsf. Additionally, EISA 433 requires a fossil fuel reduction of 65% by 2015 phasing up to 100% fossil fuel use reduction by 2030.

More broadly, GSA is committed to achieving a Zero Environmental Footprint and has put forth a Strategic Sustainability Performance Plan, which outlines how to meet this commitment.

ON THE APPROACH

“The government’s approach to risk in ESPCs has changed dramatically. We are more willing than ever before to accept risk, because honestly we’ve looked at these projects, and there’s not that much risk there. The choice is clear when weighed against the risk – the opportunity cost – of foregoing the use of this tool.”

—Kevin Kampschroer

GSA

2 http://www.gsa.gov/portal/content/130449
3 http://www.gsa.gov/portal/category/100551
Approach to Net Zero

Definition of Net Zero
There are four commonly accepted industry definitions for net zero energy: site, source, cost, and carbon. For the purpose of the Challenge, net zero site energy is the preferred metric since it is comprehensive, keeps the analysis relatively straightforward, and complies with all EISA 2007 requirements. Net zero site energy specifies that the site produces at least as much renewable energy as it consumes summed over a year. Acceptable forms of renewable energy to meet this goal include onsite photovoltaic (PV), solar hot water, low impact hydroelectric, wind, biomass, biogass, ethanol and biodiesel. The Challenge does not permit the use of renewable energy credits (RECs) to offset site energy use.

While the ultimate objective of the Challenge is to accelerate the realization of net zero energy in all GSA buildings, net zero energy is not a strict requirement for winning the Challenge. Projects should maximize energy savings in a cost-effective manner, and include the creation of a roadmap for attaining net zero as part of their implementation plan.

The pathway to Net Zero starts with efficiency
Existing buildings are full of energy efficiency opportunities waiting to be realized. While some such opportunities are obvious and easily attainable, talented design teams can often achieve much deeper savings by rethinking the project and producing reductions in capital cost. RMI defines deep energy retrofits as those that achieve much larger savings—over 50% reduction in energy use—than those of conventional, shallow retrofits. However, deep retrofits are more characterized by their process than by their results (i.e. there could be a deep retrofit that only achieves a 35% energy savings but took all the right steps in the right order).

Buildings are composed of numerous systems and integrative, whole-building strategies recognize how individual efficiency measures can affect other building systems and attributes. Improvements to the building envelope, for example, can reduce mechanical system loads and equipment, which in turn may increase usable floor area and reduce operating costs. RMI promotes an integrative, whole-system approach to achieve profitable and innovative deep retrofits. This approach is a highly collaborative and iterative design process in which design teams employ whole-systems thinking to create multiple benefits from single expenditures, often justifying energy savings greater than 50%. By simply recognizing how systems are interrelated, ESCOs can cause small improvements to cascade into substantially larger benefits.

4 Executive Order 13514 (10/2009) which clarifies EISA 2007, defines a zero-net-energy commercial building a high-performance commercial building that is designed, constructed, and operated to require a greatly reduced quantity of energy to operate; to meet the balance of energy needs from sources of energy that do not produce greenhouse gases; in a manner that will result in no net emissions of greenhouse gases; and to be economically viable.

5 Calculated as net energy – not accounting for source generation (carbon intensity) or transmission losses.

6 This definition is consistent with the NZE definitions put forth by NREL (http://www.nrel.gov/docs/fy06osti/39833.pdf) and generally accepted in the industry EXCEPT for the inclusion of RECs.

GSA ESCO Net Zero Renovation Challenge
Right Steps in the Right Order
In the deep energy retrofit process, it is important to identify the right steps to take, and equally important to perform these steps in the right order. Following this process will enable project teams to realize the most cost-effective energy reductions:

1. **Define the specific end-user needs**
 What are the needs and services required by the building occupants? Understand this first, rather than jumping right to the equipment needed to provide the service.

2. **Understand the existing building structure and systems**
 Understand and assess the current state of the building. What needs are not being met? Why not?

3. **Understand the scope and costs of planned or needed renovations**
 What systems or components require replacement or renovation for non-energy reasons (and are there any other available funding sources)? What are the costs or interruptions to service or occupancy? Identify these planned renovations early, as it may be possible to combine this with a desired energy efficiency retrofit to optimize the overall return on investment.

4. **Reduce loads**
 Select measures to reduce loads:
 - First, through passive means (such as increased insulation)
 - Then, by specifying the most efficient non-HVAC equipment and fixtures

5. **Select appropriate and efficient HVAC systems**
 After reducing loads as much as possible, consider what HVAC system types and sizes are most appropriate to handle the drastically reduced loads.

6. **Find synergies between systems and measures**
 Seek synergies across disciplines and find opportunities to recover and reuse waste streams. Through this exercise, you can often realize multiple benefits from a single design decision.

7. **Optimize controls**
 After the most appropriate and efficient technologies have been selected, the focus should shift to optimizing the control strategies.

8. **Incorporate renewables**
 Once the energy consumption has been drastically reduced, it is appropriate to investigate and size renewable energy options that are well suited to the climate and site.

9. **Realize the intended design**
 Tune the owner’s project requirements (OPR), implement measurement and verification (M&V) and continuous commissioning to ensure full realization of the intended design.

Goal Setting – Striving Towards the Theoretical Minimum
The purpose of developing the theoretical minimum is to set the bar for what is technically possible for building performance. Then, as constraints arise (e.g. LED lighting everywhere in the building is not cost-effective or raising the temperature setpoint to 80°F conflicts with existing tenant lease requirements) and the targeted level of savings starts to drift away from the technical potential, the team learns why that is and what conditions would need to exist to make that measure feasible. It changes the retrofit paradigm from ‘We can’t because…’ to ‘We could if…’.
The Theoretical Minimum energy use estimate is the highest amount of efficiency available for consideration as part of an ESPC, or conversely, the minimum amount of renewable energy needed to attain net zero.

Integrative Design and Analysis

In the conventional approach of an ESPC, design teams are typically required to evaluate measures in isolation and based on simple payback period (SPP). A simple payback approach underestimates the value of an ECM because it only accounts for annual energy cost savings and capital cost. It ignores other significant costs and benefits (rebates, maintenance savings, avoided immediate and future capital investments, etc.) as well as savings that accrue beyond the timeframe of the simple payback period. Because the inclusion of additional cash flows or the impact on long-term operating costs can significantly alter the decision to include or exclude a particular measure, a simple payback metric is not ideal. In sharp contrast, a comprehensive LCCA (Life Cycle-Cost Analysis) gives decision-makers the full financial implications of various design decisions to make better decisions about bundles of measures and the project as a whole.

Collaboration Among Stakeholders

A deep retrofit process also involves all the stakeholders in a building throughout the entire analysis and design process. Stakeholders include ownership, facilities management, design engineers, occupants, energy modelers, finance, vendors, and the utility. Some of the most insightful and effective ideas often come from sources typically not integrated into the design process. In existing buildings, the maintenance and facilities managers often possess much of the institutional knowledge of the building and can make valuable contributions to the deep retrofit.

Tenant/Occupant Engagement

Occupants are the ultimate end users of buildings and consumers of energy. In GSA buildings, occupants may have strict and varied tenant-space requirements depending on their work activities. However, their contributions to a successful ESPC are viable, and can make or break a deep retrofit project. Occupant impact on energy use derives from a combination of tenant interior fit-out and occupant behavior. Occupants engaged during the design phase, typically through workshops, offer benefits to the overall design. A comprehensive discussion with the occupants on the goals, measures, and options of the ESPC will ease the transition and improve occupant engagement. Upcoming tenant guidelines (based on the Byron G. Rogers Federal Courthouse retrofit project) will assist in integrating occupants into an energy retrofit.

On The Challenge

“We have been looking at each of the elements on their own, but they have to be considered integratively. We haven’t been using that in the ESPC evaluation.”

—Kevin Kampschroer
GSA
Right Timing the Retrofit

To fully achieve the effects of a deep retrofit, those implementing the program should piggyback efficiency improvements on already planned (and budgeted) capital improvements and breaks in occupancy, apply integrative design principles, take advantage of advanced energy modeling, auditing, and life cycle cost analysis methods, and commit to ongoing metering and commissioning in order to verify savings while illuminating opportunities for continuous improvement. The resulting deep retrofit process improves the economics of efficiency, while incurring myriad other benefits to building owners, occupants, and society as a whole.

Balancing Efficiency with Renewable energy

Renewable energy systems are necessary for any net zero project, and ESPCs have often included the installation of renewable energy. Renewable energy should typically be explored when all cost effective efficiency measures have been assessed. Cost effectiveness for efficiency in a net zero project is slightly different from a more traditional project since it occurs when the cost of efficiency is less than the cost of renewable generation. For instance, on the new net zero NREL Research Support Facility in Golden, Colorado, the project team used a value of $5.23/watt, the all-included cost of PV, and the cost effectiveness limit of efficiency. For each watt they saved in demand reduction and efficiency, they avoided $5.23/watt for PV to offset that load. Any efficiency measure that cost less than $5.23 for each watt it saved was implemented.

Renewable energy systems such as solar, wind, and hydro are also variable, and could benefit from additional systems (dispatchable renewable energy, storage, or tracking) to optimize their generation. Bundling renewable energy and efficiency, with a possible microgrid offers additional savings, and could greatly increase the size of the ESPC.

Technologies to Achieve Deep Energy Savings

The technology to achieve net zero and EISA 433 goals exists – but may not always be self-funding (specifically large solar arrays and biomass or biogas combined heat and power (CHP)). Financially sound net zero projects begin by reducing heating and cooling loads and minimizing plugloads (lighting, appliances, and controls). And despite the integrative effects available from bundled measures, ESPCs have typically revolved around lighting, controls, heating, and cooling ECMs. A deep retrofit solution will require a holistic approach to the building energy and waste flows and careful energy modeling and sizing – coupled with an awareness of efficient technologies.

The FEMP Technology Deployment Matrix offers a tool for ESCOs and agencies to identify and assess underutilized technologies for ESPC projects. The tool currently ranks 49 technologies by impact, each of which are regularly evaluated and updated to facilitate the ECM selection process. FEMP also supports technology deployment specifically for ESCOs – targeting a 25% increase in utilization of selected technologies. FEMP staff will create best practice guidance papers and case studies of successful deployment examples. Some examples of this program include the demonstration of cool roofs and variable refrigerant volume air conditioning in a US Coast Guard base in Puerto Rico. The Coast Guard Base project used a Power Purchase Agreement (PPA). Power purchase agreements allow Federal agencies to fund onsite renewable energy projects with no upfront capital costs incurred. With a PPA, a developer installs a renewable energy system on agency property under an agreement that the agency will purchase the power generated by the system. The agency pays for the system through these power payments over the life of the contract. After installation, the developer owns, operates, and maintains the system for the life of the contract. FEMP also supports the GSA Green Proving Ground Project, which evaluates 16 new technologies (including ground source heat pumps, smart windows, highly insulated windows, daylighting, PV joined with solar hot water, net metering, and plugload/behavioral change).
Barriers to Deep Retrofits and Proposed Solutions

Charrette participants divided into 5 breakout groups to discuss the barriers to deep energy ESPCs and brainstorm possible solutions. Half way through the brainstorm, participants switched groups so each attendee was able to contribute to two breakout groups. Participants were assigned so each ESCO provided input to 4 different topics.

The 5 breakout group topics included:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis and Integrative Design</td>
<td>Integrative, whole building analysis and measures are not commonly included in ESPCs for a variety of reasons including time constraints, risk, confidence in results and unfamiliarity with the process.</td>
</tr>
<tr>
<td>Project Economics</td>
<td>Deep energy retrofits may need a different angle on funding ESPC projects that takes into account blending appropriated funds with ESPC funding, long term contracting, bundles of ECM’s and aggregated delivery.</td>
</tr>
<tr>
<td>ESPC Delivery Process and Procurement</td>
<td>The current ESPC delivery process is too long and lacks consistency among project managers in different agencies.</td>
</tr>
<tr>
<td>Occupant Behavior</td>
<td>Energy savings strategies that rely on occupant behavior modifications are rarely part of the ESPC process, and this potential savings is unrealized.</td>
</tr>
<tr>
<td>Measurement and Verification</td>
<td>M&V strategies may need to be modified to determine savings from interactive energy conservation measures.</td>
</tr>
</tbody>
</table>

The objectives of each breakout group were to:

1. Identify the common barriers experienced in current practices as they relate to deeper energy savings
2. Brainstorm potential solutions to those barriers
3. Prioritize key solutions that should be addressed urgently

Summaries from each breakout group are provided below. There were many overlapping topics from the breakout groups, but they were approached from different angles.

The individual barriers and solutions will be used to structure the Challenge and to inform the program GSA intends to create to facilitate more ESPC projects, as described in the Next Steps section of this report.

Analysis and Integrative Design

Integrative analysis is essential to cost-effectively achieve deep energy savings; however, it is typically not part of the ESPC process. The Analysis and Integrative Design breakout group discussed the typical ESPC analysis process and how and when whole building energy modeling and LCCA are employed. The group also discussed engaging innovative technologies in this process and integrating disparate ECMs to achieve bundled, whole building benefits and energy savings.

The group discussed the barriers and potential solutions and identified the following as the most important:
Please refer to the Appendix for additional barriers and solutions.

Project Economics

Deep energy savings through standard ESPCs historically only appear profitable either with extremely high utility rates (Hawaii, Guam) or on extremely inefficient buildings. Installation of comprehensive energy saving technologies would require a substantial contribution of appropriated funds, which may not be available. However, the final result of a guaranteed ESPC can be modified through a variety of levers beyond appropriations funding. Finding synergies between agencies, financiers, and customers to redefine project scope and reduce project costs would help enable deep retrofit ESPCs.

This breakout group discussed current financing for ESPCs, the ways to use standard process for financing through ESPCs, the biggest hurdles for deep energy retrofits in the way ESPCs are currently financed, and the methods to overcome these hurdles. At the end of the discussion, the breakout group prioritized the following major barriers and solutions:

Financing Net Zero Energy Projects

<table>
<thead>
<tr>
<th>Key Barriers</th>
<th>Possible Solutions</th>
</tr>
</thead>
</table>
| It is hard to overcome high financing costs| ▪ Create a centralized effort (perhaps driven by GSA?) to get more preferable interest rates - as close as possible to fed discount rate (.75%) or like term treasury bond.
▪ Create a case for gathering support (appeal to broader issues, jobs, small business requirements, etc.)
NOTE: This effort should be aligned with Skye Schell’s (FEMP) ongoing efforts to lower ESPC interest rates |
There is no integration with planned improvement projects

- Agency/building manager should provide improvement information ahead of time (through RFP or data sharing) to ESCO
- ESCO could fold pre-planned improvement into a larger contract, possibly involving the current O&M provider

There is no inclusion of avoided future (greater than 1-2 years) costs in ESPC including capital and maintenance

- Agencies allow avoided future costs for utility energy service contracts (UESCs) and can authorize for ESCOs
- Clear guidance from central office through to contracting officers is needed

Contract duration limits longer payback measures

- Include the life cycle-costs analysis (LCCA) costs (avoided) as net present value (NPV)
- Treat each energy conservation measure (ECM) differently depending on life cycle or assess based on bundled measures

Please refer to the Appendix for additional barriers and solutions.

ESPC Delivery Process and Procurement

This breakout group identified the biggest hurdles for deep energy retrofits in the way ESPCs are currently processed and managed by the GSA, FEMP and participating ESCOs, including the processes for ESCO selection, implementing the IGA, and scoping and implementing the performance contract.

The group identified the following major considerations to address process improvements at a high level:

- Agencies and sites need to be fully bought into deep retrofits
- Should the process be structured to be largely centralized or regionalized? Which best ensures a skilled team? Should the team perform a quick and effective deep retrofit and/or create a replicable model?
- Retrofits of portfolios of buildings provide increased flexibility and opportunity for cost-effective deep savings (simplified analysis, bundling for financing, etc.). How would the process be structured for portfolios?
- This Challenge will include around 32 buildings. Will GSA (or other agencies) replicate this large-scale ESPC process? Consider how the process is set up in terms of scaling and speed.
- How should (if at all) the process support the GSA objective of diverse ESCO participation?

More specifically, the following 3 barriers were discussed at length.

<table>
<thead>
<tr>
<th>Key Barriers</th>
<th>Possible Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major confusion/disagreement on what can be counted as eligible savings</td>
<td>- Clearly define eligible sources of payment; consider O&M, utility rebates, PPA,</td>
</tr>
<tr>
<td></td>
<td>leasability, and absenteeism</td>
</tr>
<tr>
<td></td>
<td>- Define how to demonstrate post-retrofit differential for these savings categories</td>
</tr>
<tr>
<td></td>
<td>- Clarify how to address elevated baselines (how much it would have cost had the</td>
</tr>
<tr>
<td></td>
<td>project invested in proper replacements, maintenance, etc.)</td>
</tr>
<tr>
<td>The current ESCO selection process takes too long</td>
<td>- Create a streamlined process to select all 32 project ESCOs in 90 days</td>
</tr>
<tr>
<td></td>
<td>- Consider a 3-step process:</td>
</tr>
<tr>
<td></td>
<td>1. One notification letter to all 16 ESCOs, with project grid including building</td>
</tr>
<tr>
<td></td>
<td>data status and team experience level. ESCOs mark those projects in which they</td>
</tr>
<tr>
<td></td>
<td>are interested</td>
</tr>
<tr>
<td></td>
<td>2. GSA team (region/central?) chooses top 3 ESCOs for each job</td>
</tr>
<tr>
<td></td>
<td>3. GSA completes final selection through oral interview</td>
</tr>
</tbody>
</table>
Significant project delays occur because regions/sites are not always incentivized to adhere to aggressive schedules

- Establish a midterm review in IGA, with clear evaluation criteria and protocol for follow-up
- Create urgency by enforcing GSA rebates/incentives tied to meeting deadlines

Please refer to the Appendix for additional barriers and solutions.

Occupant Behavior Change

Occupant behavior significantly affects the energy saving strategies; therefore it should be seriously taken into consideration, especially in deep retrofits. However, energy savings strategies that rely on occupant behavior modifications are rarely part of the ESPC process, and this potential savings is often unrealized.

At the end of the discussion, the breakout group prioritized the following major barriers and solutions:

<table>
<thead>
<tr>
<th>Key Barriers</th>
<th>Possible Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>It is difficult to quantify energy/cost savings</td>
<td>- Find opportunities for agencies to share risk with the ESCO</td>
</tr>
<tr>
<td></td>
<td>- Create incentive to over-perform</td>
</tr>
<tr>
<td></td>
<td>- Stipulate a conservative savings estimate</td>
</tr>
<tr>
<td></td>
<td>- Allow occupant behavior savings to be bundled with other measures</td>
</tr>
<tr>
<td>There are not many good examples of “Behavior ECMs”</td>
<td>- Create case studies and get the word out</td>
</tr>
<tr>
<td></td>
<td>- Start with low risk process-based solutions (e.g., daytime cleaning)</td>
</tr>
<tr>
<td>It is hard to incentivize all occupants of varying cultures, generations, and characteristics</td>
<td>- Be more inclusive during design</td>
</tr>
<tr>
<td></td>
<td>- Identify obsolete processes used by tenants that are inhibiting energy savings</td>
</tr>
<tr>
<td></td>
<td>- Tie savings to issues “bigger than the individual,” such as climate change, resource scarcity, or economic duress.</td>
</tr>
<tr>
<td></td>
<td>- Create alternative metrics (e.g., jobs preserved)</td>
</tr>
<tr>
<td>ESCOs have no control over occupants and engaging occupants is challenging</td>
<td>- Provide well-structured educational programs and trainings to respond to the needs of different audience</td>
</tr>
<tr>
<td></td>
<td>Create strategies to let individuals see the big picture yet increase local control for direct correlation of actions to savings.</td>
</tr>
</tbody>
</table>

Please refer to the Appendix for additional barriers and solutions.
Measurement and Verification

Measurement and Verification (M&V) is critical to increase the success of the energy conservation measure (ECM). During this session, the groups discussed the biggest constraints to deliver deep retrofits through current M&V methods and protocol, the ways to modify current M&V methods to better support deep energy retrofits and the strategies to expand the use of M&V to provide ongoing performance optimization and to educate occupants and maintenance staff.

The breakout groups prioritized several barriers and potential solutions to shorten the time and complexity associated with M&V:

<table>
<thead>
<tr>
<th>Key Barriers</th>
<th>Possible Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>There is uncertainty/variability of how building is operated on an ongoing</td>
<td>• Treat O&M as ECM and have ESCO provide that service</td>
</tr>
<tr>
<td>basis after installation</td>
<td>• Have O&M contractor address it specifically</td>
</tr>
<tr>
<td></td>
<td>• Clearly specify all performance vs. operation responsibilities</td>
</tr>
<tr>
<td>The cost, level of effort, and complexity for whole building M&V (including</td>
<td>• Perform robust M&V for first year</td>
</tr>
<tr>
<td>keeping track of adjustment factors, performing sub-metering, client</td>
<td>• Have Option A or Option B for following years.</td>
</tr>
<tr>
<td>understanding of M&V) is critical</td>
<td>• Pull M&V out of agencies’ control and have FEMP oversee</td>
</tr>
<tr>
<td>There is lack of consistency across GSA offices, agencies and regions</td>
<td>• Apply better standardization throughout</td>
</tr>
<tr>
<td></td>
<td>• Have common, more specific M&V methodology across similar projects</td>
</tr>
<tr>
<td></td>
<td>• Create a center of competence for M&V (e.g. move to FEMP)</td>
</tr>
<tr>
<td>There is poor, absent or incorrect baseline performance data</td>
<td>• Improve baseline efforts</td>
</tr>
<tr>
<td></td>
<td>• Have FEMP approve baseline; allow ESCO to submit before price proposal</td>
</tr>
</tbody>
</table>

Please refer to the Appendix for additional barriers and solutions.
Action Items and Next Steps

The workshop provided a good platform to understand and prioritize the challenges and solutions to make the Net Zero Renovation Challenge a success. There are two different levels of next steps, one that relates directly to the next steps for the challenge and another that relates to the larger vision of improving the ESPC process, both within GSA and more broadly within FEMP.

Next steps for the Net Zero Renovation Challenge:

<table>
<thead>
<tr>
<th>#</th>
<th>Task</th>
<th>Timeline</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GSA to schedule call with all ESCOs to review</td>
<td>The week of December 12th, 2011</td>
</tr>
<tr>
<td>2</td>
<td>GSA will issue the Notice of Opportunity (NOO) (including list of buildings)</td>
<td>January 2012</td>
</tr>
<tr>
<td>3</td>
<td>ESCOs respond to NOO with interest, approach and preferred buildings</td>
<td>February 2012</td>
</tr>
<tr>
<td>4</td>
<td>GSA assigns buildings to ESCO’s</td>
<td>March 2012</td>
</tr>
<tr>
<td>5</td>
<td>ESCOs perform IGA</td>
<td>April-July 2012</td>
</tr>
<tr>
<td>6</td>
<td>Contracts awarded</td>
<td>August 2012</td>
</tr>
</tbody>
</table>

Based on the key barriers identified, the following next steps have been identified:

<table>
<thead>
<tr>
<th>Opportunities for Deep Retrofits</th>
<th>Proposed Solutions</th>
<th>Action item</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time is money. By reducing/streamlining the ESCO award process (currently 18 months on average), GSA can get to savings sooner, reduce costs to ESCOs and add 20-30% from savings to project budgets.</td>
<td>GSA and FEMP intend to expedite the process of ESCO selection based on the experiences of the Challenge – targeting 30 days for selection and 5 months for award.</td>
<td>GSA to work with FEMP to enable concurrent reviews, rather than staggered reviews.</td>
</tr>
<tr>
<td>Shared risk between the ESCO and the agency would enable deeper savings from ESPCs</td>
<td>Certain risk sharing between parties and/or policy changes to encouraged reduced interest rates for available financing would lower project costs and make greater energy savings more viable. Combining appropriated funding for designated projects with ESPCs could lead to bigger savings, more robust projects and better buildings overall.</td>
<td>GSA encourages blended appropriated funds with performance contracting through individual project team negotiation. Although it is unlikely that appropriated funding will be available for Challenge projects, this methodology will be raised with GSA regions and encouraged as part of the larger ESPC delivery process.</td>
</tr>
<tr>
<td>Redefine or clarify eligible savings, particularly as it relates to O&M and avoided capital costs.</td>
<td>Including avoided capital and maintenance costs (even over just 1-2 years in the future) can increase project financing. Clear and consistent guidance from GSA on what the ESPC can include is necessary.</td>
<td>GSA will promote and work with FEMP to develop training across GSA Regions and develop standardized list of acceptable savings.</td>
</tr>
<tr>
<td>ESCOs very rarely guarantee occupant behavior energy use reduction – largely because the savings from an occupant</td>
<td>ESCOs could incorporate occupant behavior savings into bundles (through the implementation of each measure) instead</td>
<td>GSA encourages Challenge participants to submit measures related to occupant behavior savings.</td>
</tr>
</tbody>
</table>

7 It should be noted that for the Challenge, it is not anticipated that there will be any appropriated funding available.
<table>
<thead>
<tr>
<th>Behavior program are hard to quantify and verify.</th>
<th>Of as a stand-alone measure. Solutions to share risk, or incentives for ESCOs to over-perform would encourage the inclusion of occupant behavior. These energy reductions can either be explicitly measured (as a measure or part of a bundle) or included in other relevant measures by stipulating energy savings and the implementation of occupant engagement.</th>
<th>Concurrently, GSA will work with FEMP to put together some methodology about acceptable practices to account for and verify these savings. GSA will work with the building tenants to assess areas of opportunity.</th>
</tr>
</thead>
<tbody>
<tr>
<td>For broader uptake of the ESPO process, the GSA program should support aggregated, multi-building projects.</td>
<td>Bundling of ESPO projects (and associated financing) could lower overhead, implementation, and financing costs and could make more measures viable.</td>
<td>GSA will evaluate their portfolio and identify clusters of buildings for future solicitation. Any ESCO or Region engaged at this scale should continue to challenge financial institutions to reduce cost of financing.</td>
</tr>
<tr>
<td>Uncertainty with M&V stems from the operation of the building after installation.</td>
<td>One option is to treat operations and maintenance (O&M) as a part of a bundle (additional savings are often possible – and can improve project financials) and assign responsibility to the ESCO – to oversee the existing O&M contractor.</td>
<td>GSA encourages the integration with buildings operations, not just at the hand-off, but for years following. Challenge participants are encouraged to include an approach to providing this service for consideration.</td>
</tr>
</tbody>
</table>
Appendices:

Appendix A: Attendee Feedback: “What one change would you make?”

The workshop was designed to encourage the ambitious and audacious improvement of the ESPC process. To facilitate this type of thinking, RMI asked attendees to set aside incremental solutions and answer: “What single change in the ESPC process would be most impactful for achieving deep savings?” Each attendee wrote down their own proposed procedural change, and then went around the room and read out their idea.

The “word cloud” below shows the words that appeared in the various topics, with the size of the words in proportion to the number of times they were mentioned.

Key Themes from Attendee Input:

1. Rethinking the funding model (potentially to include a blend of ESPC and appropriations)
2. Redistribution of risk (modifying guaranteed savings approach, government take on some risk)
3. Streamlining the process (speeding up approvals and ESCO selection from 18 month to around a year, or 4 months as Kevin Kampschroer intends)
4. Bundling and integrating measures (including behavior/including tenants)
5. Discussion of the innovative elements of the process (radical new process/way of thinking)
6. Redefining avoided costs (including O&M savings and non-energy related projects)
Appendix B: Additional Barriers and Solutions for Achieving Net Zero Renovations

The following tables show additional barriers and solutions that were brainstormed in the breakout groups.

Analysis and Integrative Design

<table>
<thead>
<tr>
<th>Barriers</th>
<th>Proposed Solutions</th>
</tr>
</thead>
</table>
| Customer doesn't trust modeling results | ▪ Employ dedicated staff to review/contribute to process (Army does this)
▪ Establish constant communication |
| Typical ESPC process does not include "true" LCCA; ESCOs can't use MILCON funds. SRM funds requires timing | ▪ Timing of funds needs to support this process
▪ Process and regulatory change needed |
| Some ESCOs are not organized for integrative design | ESCOs would be incentivized to set up integrated project teams |
| There is lack of collaboration between ESCO, architect and customer | Early involvement of all stakeholders through design charrettes |
| ESCOs propose O&M and it is perceived as expensive because current O&M funding does not support proper maintenance | Government need to budget for proper maintenance |
| There is no business case for new technology such as microgrids | GSA needs to assign value to energy security |
| ESCOs don’t follow integrative design | ▪ ESCOs need more experience and case studies in order to trust the outcomes of the integrative design process
▪ GSA needs to roll in extra development costs |

Project Economics

<table>
<thead>
<tr>
<th>Barriers</th>
<th>Proposed Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>All GSA regions are on different pages and have different processes, which increases time and costs</td>
<td>Standardize ESPC delivery, evaluation criteria and procurement approach</td>
</tr>
<tr>
<td>There is confusion and lack of clear guidance on how to handle RECs in terms of ownership and value of REC over time</td>
<td>Allow sale of RECs to enlarge projects and make more suitable projects for ESPC</td>
</tr>
</tbody>
</table>
| Longer payback periods are resisted | ▪ GSA supports ESPC’s and the Challenge on all levels. Need greater oversight of regional teams. Needs to be a standardized way to do it so a single person can't block. Need centralized support
▪ GSA to buy out existing ESPCs, purchasing the equipment, paying off the project loan, and use ongoing cash streams for new deep retrofit projects. (assuming excess cash flow is available). This will be detrimental to the financier – but not to the ESCO |
| Incorporating O&M costs and avoided upgrade costs (and others) into ESPC is important but hard because buildings already have O&M contractors and would need to move scope to the ESPC | ▪ Provide accurate baseline costs
▪ ESCOs should take over, joint venture, oversee small business (serve as a mentor)
▪ Savings from right sizing of M&V for integrated projects (not many historically) |
Blending ESPC with appropriations funded projects and bundling of ECMs often not done because of high costs of envelope measures

- Savings from better interest rates (closer to the fed discount rate or like term treasury bond) and others can allow longer payback measures to form part of the bundle.
- Better incorporation of avoided costs will also help

Bundling project across geographic region does not work since financing drives costs higher for the IGA (and cost savings are hard to find here)

- Standardized DOE enabled program (3 ECMs) across geographic regions for GSA buildings (leveraging economies of scale on suppliers and financing)
- This can work for simple measures – lighting, controls, water. Not for deep projects

ESPC Delivery Process

<table>
<thead>
<tr>
<th>Barriers</th>
<th>Proposed Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>There is lack of available building data, and agency understanding/ proficiency around data/design needs</td>
<td>Provide agency/site training to regather data</td>
</tr>
</tbody>
</table>
| There is lack of experience in agencies/sites | • Provide complementary training
• Select right people to participate |
| There is lack of standard GSA regional process | Develop a centralized resource including technical review, contracting, etc. with the caveat that there is agreement from the agencies with the centralized approach that’s used |
| There is a significant cost/risk to the additional analysis required for successful deep retrofits | |
| Regions may not be onboard with deep retrofit | |

Occupant Behavior Change

<table>
<thead>
<tr>
<th>Barriers</th>
<th>Proposed Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolating measures makes it difficult to identify benefits</td>
<td>Need contracting solution</td>
</tr>
<tr>
<td>There are constant changes in occupant density and other characteristics</td>
<td>Need training and education programs that endure</td>
</tr>
<tr>
<td>ESCOs perceive they need control over occupant behavior</td>
<td>ESCOs need accountability</td>
</tr>
</tbody>
</table>
| Maintenance personnel often encounter false perceptions, misaligned incentives | • Provide education and training
• Need ESCO controlled O&M (outsourced) |
<p>| Organizational leaders are not leading by example | Empower leaders to create incentives and cheerlead |</p>
<table>
<thead>
<tr>
<th>M&V</th>
<th>Barriers</th>
<th>Proposed Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Current methods do not account for existing equipment</td>
<td>Capture savings associated with O&M improvements that happen as part of new installation</td>
</tr>
<tr>
<td></td>
<td>Guarantee is based on equipment O&M being done effectively, but if ESCO doesn’t have control over O&M it might be at risk</td>
<td>Have ESCO be responsible for O&M</td>
</tr>
<tr>
<td></td>
<td>ESCO needs to verify performance of integrated measures that might be difficult to accurately model and estimate savings</td>
<td>• Provide documentation of energy modeling assumptions, inputs, outputs for FEMP to review/accept for reasonableness</td>
</tr>
</tbody>
</table>
Appendix C: Glossary of Terms and Acronyms

<table>
<thead>
<tr>
<th>TERM</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avoided Cost</td>
<td>The cost a local distribution company would otherwise incur to generate power to buy the same amount of power if it did not purchase from a qualifying facility.</td>
</tr>
<tr>
<td>Baseline Demand</td>
<td>The calculated energy demand of a piece of equipment or a site prior to the implementation of the ECMs. Baseline physical conditions, such as equipment counts, nameplate data, and control strategies will typically be determined through building occupancy, energy end-use survey and plug load surveys of the Facilities.</td>
</tr>
<tr>
<td>Baseline Usage</td>
<td>The calculated energy usage of the Facilities prior to the implementation of the ECMs.</td>
</tr>
<tr>
<td>British Thermal Unit (BTU)</td>
<td>The amount of heat energy required raising one pound of water by one degree Fahrenheit at sea level. It is used as the basic unit of energy measurement.</td>
</tr>
<tr>
<td>Delivery Charge</td>
<td>The charge on your utility bill representing the cost of moving power from the generation source to your home or business. This portion of your electric bill is not open to competition, but is regulated by your state’s PUC.</td>
</tr>
<tr>
<td>Demand (or Load)</td>
<td>The amount of electricity that must be generated to meet the needs of all customers at a certain point in time.</td>
</tr>
<tr>
<td>Demand Charge</td>
<td>A charge for the maximum rate at which energy is used during peak hours of a billing period. That part of a power provider service charged for on the basis of the possible demand as distinguished from the energy actually consumed.</td>
</tr>
<tr>
<td>Demand Response</td>
<td>Ability of end user to cut back on power use when called by a Load Serving Entity.</td>
</tr>
<tr>
<td>Demand Side Management (DSM)</td>
<td>The planning, executing and monitoring of utility activities designed to help customers use electricity more efficiently.</td>
</tr>
<tr>
<td>Department of Energy (DOE)</td>
<td>The federal government agency engaged in establishing policies and programs relating to national energy matters.</td>
</tr>
<tr>
<td>Distributed Generation</td>
<td>Small, modular, decentralized, grid-connected or off-grid energy systems located in or near where energy is used.</td>
</tr>
<tr>
<td>Distribution</td>
<td>The delivery of electricity to an end-user through low-voltage lines or natural gas through pipeline systems.</td>
</tr>
<tr>
<td>Emission Factor</td>
<td>A measure of the average amount of a specified pollutant or material emitted for a specific type of fuel or process.</td>
</tr>
<tr>
<td>Energy Audit</td>
<td>An energy audit is an inspection, survey and analysis of energy consumption for purposes of conservation in a building, process or system to reduce the amount of energy input into the system without negatively affecting the output(s). Service providers may provide these services as part of their offerings.</td>
</tr>
<tr>
<td>Energy Conservation Measure (ECM)</td>
<td>The installation of equipment or systems, or modification of equipment or systems.</td>
</tr>
<tr>
<td>Energy Efficiency</td>
<td>Refers to products or systems using less energy to do the same or better job than conventional products or systems. Energy efficiency saves energy, saves money on utility bills, and helps protect the environment by reducing the demand for electricity.</td>
</tr>
<tr>
<td>Energy Service Company (ESCO)</td>
<td>A non-utility business that provides gas or electric commodity or that installs energy efficient and other demand side management measures in facilities.</td>
</tr>
<tr>
<td>Energy Savings Performance Contract (ESPC)</td>
<td>Agreement with an energy service company (ESCO). The ESCO will identify and evaluate energy-saving opportunities and then recommend a package of improvements to be paid for through savings. The ESCO will guarantee that savings meet or exceed annual payments to cover all project costs—usually over a contract term. If savings don’t materialize, the ESCO pays the difference, not you. To ensure savings, the ESCO offers staff training and long-term maintenance services.</td>
</tr>
<tr>
<td>Excess Verified Savings</td>
<td>The amount of Verified Savings minus Guaranteed Savings in a Guaranty Period.</td>
</tr>
<tr>
<td>Federal Energy Management Program (FEMP)</td>
<td>A program of the U.S. Department of Energy (DOE) that implements energy legislation and presidential directives. FEMP provides project financing, technical guidance and assistance, coordination and reporting, and new initiatives for the federal government. It also helps federal agencies identify the best technologies and technology demonstrations for their use.</td>
</tr>
<tr>
<td>Fossil Fuels</td>
<td>Fuels that are derived from decayed plant and animal matter, that over millions of years, under pressure and heat, have become petroleum, coal, natural gas, etc.. There is a finite amount of such resources, and therefore they are called non-renewable fuels.</td>
</tr>
<tr>
<td>Generation</td>
<td>A process that produces electricity.</td>
</tr>
<tr>
<td>Generation Charge</td>
<td>The fee charged to the consumer for the generation of electricity.</td>
</tr>
<tr>
<td>Geothermal Heat Pump</td>
<td>A type of heat pump that uses the ground, ground water, or ponds as a heat source and heat sink, rather than outside air. Ground or water temperatures are more constant and are warmer in winter and cooler in summer than air temperatures. Geothermal heat pumps operate more efficiently than “conventional” or “air source” heat pumps.</td>
</tr>
<tr>
<td>Green Power</td>
<td>Energy produced from renewable or non-polluting and non-hazardous technologies.</td>
</tr>
<tr>
<td>Grid</td>
<td>A process that produces electricity.</td>
</tr>
<tr>
<td>Guaranty Period</td>
<td>Defined as the First Guaranty Period and each of the successive periods commencing on the anniversary of the commencement of the First Guaranty Period throughout the Term of the Agreement.</td>
</tr>
<tr>
<td>Guaranteed Savings</td>
<td>The amount of avoided Energy Costs and Operations and Maintenance Costs guaranteed to the Customer in each Guaranty Period.</td>
</tr>
<tr>
<td>HVAC</td>
<td>Heating, Ventilation, Air Conditioning - the technology of indoor or environmental comfort.</td>
</tr>
<tr>
<td>Indoor Air Quality (IAQ)</td>
<td>Term referring to the air quality within and around buildings and structures, especially as it relates to the health and comfort of building occupants.</td>
</tr>
<tr>
<td>International Performance Measurement and Verification Protocol (IPMVP)</td>
<td>The IPMVP guidelines classify measurement & verification approaches as Option A, Option B, Option C, and Option D.</td>
</tr>
<tr>
<td>Kilowatt (kW)</td>
<td>1000 watts.</td>
</tr>
<tr>
<td>Kilowatt Hour (kWh)</td>
<td>The amount of kilowatts used over a one hour span to power lights, appliances, etc... It is used as the basic unit of measure for residential and commercial electric accounts.</td>
</tr>
<tr>
<td>Leadership in Energy & Environmental Design (LEED)</td>
<td>An internationally recognized green building certification system, providing third-party verification that a building or community was designed and built using strategies aimed at improving performance across all the metrics that matter most: energy savings, water efficiency, CO2 emissions reduction, improved indoor environmental quality, and stewardship of resources and sensitivity to their impacts.</td>
</tr>
<tr>
<td>Life Cycle Cost Analysis</td>
<td>The investigation and valuation of the environmental impacts of a given product or service caused or necessitated by its existence or energy life-cycle cost analysis (ELCCA) is a decision-making tool for building owners and designers. It provides a means of comparing the present values of two or more design alternatives.</td>
</tr>
<tr>
<td>Load</td>
<td>The demand for or use of electricity.</td>
</tr>
<tr>
<td>Load Profile</td>
<td>Data collected over a period of time that approximates when and how much a customer, or class of customers, uses electricity. It is usually broken down hourly over a one-day period.</td>
</tr>
<tr>
<td>Marginal Cost</td>
<td>The cost that it takes to produce an additional energy unit, or the cost saved by not producing such unit.</td>
</tr>
<tr>
<td>Measurement and Verification (M&V) Plan</td>
<td>Details how the Guaranteed Savings will be verified.</td>
</tr>
<tr>
<td>Mega Mega British Thermal Unit (MMBTU)</td>
<td>Represents one million British Thermal Units.</td>
</tr>
<tr>
<td>Megawatt (mW)</td>
<td>1 million watts or 1000 kilowatts. Used as the wholesale unit of measure.</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>National Association of Energy Service Companies (NAESCO)</td>
<td>The premier trade association for ESCOs.</td>
</tr>
<tr>
<td>Off-peak</td>
<td>A period of time when there is a low demand for electricity on a utility’s generation system.</td>
</tr>
<tr>
<td>On-peak</td>
<td>A period of time when there is a high demand for electricity on a utility’s generation system.</td>
</tr>
<tr>
<td>Operations and Maintenance (O&M) Costs</td>
<td>Includes the cost of operating and maintaining facilities.</td>
</tr>
<tr>
<td>Peak Demand/Load</td>
<td>Maximum energy demand or load in a specified time period.</td>
</tr>
<tr>
<td>Peak Power</td>
<td>Power generated that operates at a very low capacity factor; typically used to meet short-lived, variable high demand periods.</td>
</tr>
<tr>
<td>Performance Contracting</td>
<td>The process to implement energy efficiency improvements with minimal up-front cost. It uses savings resulting from the efficiency project to pay for the work over a period of time.</td>
</tr>
<tr>
<td>Photovoltaic (Solar) Module or Panel</td>
<td>A solar photovoltaic product that generally consists of groups of PV cells electrically connected together to produce a specified power output under standard test conditions, mounted on a substrate, sealed with an encapsulant, and covered with a protective glazing.</td>
</tr>
<tr>
<td>Photovoltaic (Solar) System</td>
<td>A complete PV power system composed of the module (or array), and balance-of-system (BOS) components including the array supports, electrical conductors/wiring, fuses, safety disconnects, and grounds, charge controllers, inverters, battery storage, and the like.</td>
</tr>
<tr>
<td>Renewable Energy</td>
<td>Derived from resources that are naturally regenerative or are practically inexhaustible (ex. biomass, geothermal, solar, hydro, wind).</td>
</tr>
<tr>
<td>Renewable Energy Certificate (RECs)</td>
<td>Renewable energy certificates (referred to as RECs, and also known as renewable energy credits) represent the environmental and other non-power attributes of renewable electricity generation and are part of most renewable electricity products. RECs are measured in 1 mega-watt-hour (MWh) increments of power generated from renewable sources like wind, solar, hydro and biomass. They can be traded separately from the actual electricity produced by renewable facilities.</td>
</tr>
<tr>
<td>Renewable Portfolio (or Power) Standard (RPS)</td>
<td>State regulatory requirement that, by a defined date, a defined percentage of generation must be supplied by renewable energy sources, such as hydroelectric, solar, wind, geothermal, or biogas.</td>
</tr>
<tr>
<td>Request for Qualification (RFQ)</td>
<td>Interested ESCO’s submit their corporate resumes, business profiles, experience, and initial plan. A request for qualifications (RFQ) is a document often distributed before initiation of the RFP process. It is used to gather vendor information from multiple companies to generate a pool of prospects. This eases the RFP review process by preemptively short-listing candidates which meet the desired qualifications.</td>
</tr>
<tr>
<td>Request for Proposal (RFP)</td>
<td>A detailed explanation and outline of a project for response. This document contains all cost savings measures, products, M&V plans, and the performance contract.</td>
</tr>
<tr>
<td>Request for Information (RFI)</td>
<td>A proposal requested from a potential seller or a service provider to determine what products and services are potentially available in the marketplace to meet a buyer’s needs and to know the capability of a seller in terms of offerings and strengths of the seller. RFIs are commonly used on major procurements, where a requirement could potentially be met through several alternate means.</td>
</tr>
<tr>
<td>Retro-Commissioning</td>
<td>The Commissioning Process applied to an existing facility that was not previously commissioned.</td>
</tr>
<tr>
<td>Retrofit</td>
<td>The improving of existing buildings with energy efficiency equipment</td>
</tr>
<tr>
<td>Therm</td>
<td>100,000 Btu, 97 cubic feet, or 29.3 kilowatt hours (kWh) of energy; unit of heat.</td>
</tr>
<tr>
<td>Turnkey Service</td>
<td>Promotes a full installation or retrofit package including audit, design, replacement, rebate assistance, financing, and commissioning of lighting or other energy optimization package.</td>
</tr>
<tr>
<td>Utility</td>
<td>A regulated entity that exhibits the characteristics of a natural monopoly (also referred to as a power provider). For the purposes of electric industry restructuring, "utility" refers to the regulated, vertically integrated electric company. "Transmission utility" refers to the regulated owner/operator of the transmission system only. "Distribution utility" refers to the regulated owner/operator of the distribution system that serves retail customers.</td>
</tr>
<tr>
<td>Verified Savings</td>
<td>It is defined as the summation of the avoided Energy Costs and Operations and Maintenance Costs as determined by the Measurement and Verification Plan for the Facilities in each Guaranty Period as a result of the ECMs.</td>
</tr>
<tr>
<td>Watt (W)</td>
<td>The rate of work represented by a current of one ampere under a pressure of one volt; the equivalent of 1/746 horsepower. It is the smallest unit of measure in the electricity industry.</td>
</tr>
</tbody>
</table>
Appendix D: Presentations from Charrette (attached in a separate file)

Appendix E: Pre-Read which includes Charrette Overview, Agenda, Attendees, Case Studies, Press Release and Expedited ESPC Delivery timeline (attached in a separate file)
Deep Energy Retrofits and Achieving Net Zero

October 27, 2011
Robert ‘Hutch’ Hutchinson
Cara Carmichael

Rocky Mountain Institute

REINVENTING FIRE

Where does the efficiency come from?

Efficiency is a fundamental component of the coming energy transition – much of it driven by high performing buildings.

Cars
Other vehicles
Planes & Trains
New Buildings
Existing Buildings
Industry
Behaviors
Electricity System

Estimated U.S. Energy Use in 2005 – 2050 Quads
Deep Retrofits Are One Key

Deep = fundamental
large savings, increased value
Financeable project economics

Retrofit adoption

<table>
<thead>
<tr>
<th>% change</th>
<th>Eroding performance 5-20%, must repeat</th>
<th>30-60%+ no repeat</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electricity System a Key Ally

Building efficiency benefits the electricity system, especially at peak times. In return, utilities will offer more creative and substantial incentives, multi-building programs, integration of efficiency, storage and renewables offers, and more.

- Avoided generation investment
- Avoided or different grid cost
- Lower system losses
- System recapitalization
- Lower risk

Building Savings Potential

Efficient technologies and smart controls = 38%
Beyond that = integrative design

Net Zero Is the New Black

- Fortune 500, leading international clients asking for it
- Part of 2030 Challenge, which has been widely adopted
- Federal Gov’t committed
 - EO 13514
 - EISA 2007

Net Zero Energy Definitions

- Net-Zero Site Energy
- Net-Zero Source Energy
- Net-Zero Energy Costs
- Net-Zero Energy Emissions

- No RECs allowed for the Challenge
- the Challenge heavily weights efficiency over renewables

What is Net Zero?
Elastic thinking

The Nine Dots Problem

The Nine Dots Problem

The Nine Dots Problem

The Nine Dots Problem

origami solution

geographer’s solution
The Nine Dots Problem

机械工程师的解决方案

Reorienting Perspectives

Ameya Preserve

What is a “Deep Energy” Retrofit?

Process Differentiators:

- Broader conversations with owners
- Integrative design
- Advanced auditing, modeling, and LCIA
- Deepening MiKIV, proof of success
- Occupant engagement

Results:

- Large energy savings
- Improved project economics

Deep Energy Retrofits

The Pathway to Net Zero

Timing is Key to Profitable Deep Retrofits

1. Planned capital improvement
2. Major occupancy change
3. Major system replacement
4. Upgrades to meet code
5. Fixing an ‘energy hog’
1. The Right Steps in the Right Order

The right steps in the right order:

1. The right steps in the right order
2. Integrative design and analysis:
 a. Whole systems thinking
 b. Designing bundles
3. Collaboration among stakeholders
4. Goal setting – Striving towards the theoretical minimum
5. Tenant / occupant engagement

Early Intervention

First day decisions are the most important

Approach to Net Zero

Typical Approach

Reduce Demand + On Site Renewables + Buy RECS = Net Zero

Recommended Approach

Reduce Demand + On Site Renewables = Net Zero
APPROACH TO NET ZERO

THE RIGHT STEPS IN THE RIGHT ORDER

1. Define Needs & Set Goals
2. Understand the Existing Building
3. Understand the Scope of Planned Renovations
4. Reduce Loads
5. Select Appropriate & Efficient Technology
6. Seek Synergies
7. Optimize Controls
8. Integrate Renewables
9. Realize the Intended Design

Most people start here...

Then jump here!

WHOLE SYSTEMS PERSPECTIVE

Savings downstream results in 10x energy saved at the power plant. Also makes upstream equipment smaller, simpler and cheaper.

ITERATIVE ANALYSIS PROCEDURE

- Optimize Load Reduction Strategies
- Use LCCA to Evaluate Options
- Compare Metrics to Benchmarks and Goals
- (Re)size and select Equipment

2. Integrative Design and Analysis

Whole systems thinking Bundles

GUIDING PRINCIPLES

DEEP RETROFITS AND INTEGRATIVE DESIGN

Optimize the WHOLE, not the parts

MULTIPLE BENEFITS FROM SINGLE EXPENDITURES

Dis-integrated design occurs when each component performs just one function.

Vortex Ice / Water Technology:

1. The ice is clear.
2. Rink lines are visible.
3. Advertising income.
4. $1000 / month maintenance savings.
5. $900 / month energy savings.
The Value of LCCA

- Encourages longer term facilities perspective
- Incorporates:
 - OM&R costs
 - Energy escalation costs, cost of CO2
- Value productivity, health benefits
- Bounds the opportunity

![Lifecycle costs of a building](Source: www.wbdg.org)

NZE - Efficiency vs. Renewables

Cost savings from efficiency should be weighed against the avoided cost for renewables that would be needed to offset that load.

![Cost comparison](Image)

Key Players

- Ownership
- Facilities Management
- Design engineers
- Vendors
- Occupants
- Energy Modelers
- Finance
- Utilities

Life Cycle Cost Analysis

An iterative process among several data sets

1. Owner
2. Energy analysis
3. Business as Usual
 - Package 1
 - Package 2
 - Package 3
4. Energy Use
5. Capital cost
6. CO2

3. Collaboration

4. Goal setting

Theoretical Minimum
THEORETICAL MINIMUM

What is it?
- Maximum level of savings possible given today’s technology

WHY DO WE CARE?
- Challenges conventional thinking
- Not limited by industry benchmarks/norms
- Leads to more aggressive design targets
- Explicitly determines where ground has been lost

TECHNICAL POTENTIAL EXERCISE

GOAL SETTING

WHERE DOES IT FIT IN THE PROJECT PROCESS?

1. Understand current system & needs
2. What is technically feasible?
3. What can we implement?
4. Design
5. Install
6. Verify

APPROACH TO NET ZERO REALIZATION OF INTENDED DESIGN

- Translate M&V into a more helpful form of information – for everyone’s benefit
 - O&M improvements
 - Tenants/occupants (to inform behavior)
 - Financing (to inform risk)
 - Owners (to inform on the success of retrofit, ongoing investment)

GOAL SETTING

DIFFERENT TYPES GOALS

- **Overall Target Values**
 - EISA 2007
 - EUI < 35 kBtu/sf/yr
 - Net Zero site energy
 - Demand < 3 W/sf
- **Comparative**
 - 55% reduction from current energy use
 - 30% cost energy reduction from ASHRAE 90.1-2007
- **Certifications**
 - LEED Platinum
 - Energy Star score
- **End-Use Specific**
 - 80% reduction in lighting energy from natural daylight
 - 100% of heating from waste heat and solar thermal

5. Tenant / Occupant Engagement
Tenants Can’t Be Ignored

Projected End Use Breakdown

- Lighting: 18.8%
- Task Lighting: 1.7%
- Plug Loads: 7.5%
- Cooling: 17.6%
- Heat Rejection: 2.9%
- Pumps: 38.7%
- Fans: 1.2%
- DHW: 1.8%
- Exterior Lighting: 9.7%

Occupant Engagement

- Occupant energy use feedback (and billing)
 - Dashboards
- Occupant workshops during design and operation
 - To review project goals
 - Review tenant guidelines
 - To review functionality
 - To ID what they can do
- Guideline development
- Sample spaces with layouts and finishes

WWF Headquarters, The Netherlands

- **Load Reduction Strategies**
 - Triple glazed windows w/ south louvers
 - Ground water for cooling (and flushing toilets!)
 - Natural ventilation
 - Increased roof, wall and slab insulation

- **High Performance Energy Systems**
 - Mud ceiling with capillary heating and cooling system
 - 16-well geothermal system
 - Backup biomass system
 - 40 kW PV System
 - Solar hot water

WWF Headquarters

- Retrofit of a 1950’s agricultural laboratory
- A++ rating at the EPBD energy label
- The first Carbon Neutral Building in the country

- Location: Zeist, Netherlands
- Size: 40,900 ft²
- Completed: 2006
- Type: Office Building
- Cost: $5.4 million
IDEAS Z SQUARED DESIGN FACILITY

- Retrofit of a 60's era tilt-up concrete structure
- First commercial office building in the US to achieve a "Z2" energy efficiency goal: net zero energy, zero carbon emissions

Location: San Jose, CA
Size: 7200 ft² (669 m²)
Completed: 2007
Type: Office Building
NZE Premium: 6.3%

IDEAS Z SQUARED DESIGN FACILITY

LOAD REDUCTION STRATEGIES
- Natural daylight (skylights)
- Occupancy sensors
- High efficiency office equipment and innovative automatic controls
- Increased roof, wall, and slab insulation
- High performance window glazing (electrochromic glass)

HIGH PERFORMANCE ENERGY SYSTEMS
- Ground-source heat pump
- 28 kW PV system
- Natural ventilation supplemented by radiant heating and cooling

IDEAS Z SQUARED DESIGN FACILITY

- IDeAs Office Building consumes 60% less energy than ASHRAE 90.1.2004 levels
- The energy efficiency for the HVAC system and building envelope is 40% below 2005 California Title 24 energy requirements

Byron Rogers Federal Office Building
BYRON ROGERS FEDERAL OFFICE BUILDING

- 500,000 SF
- Built in 1964 (Historic)
- 11 different Federal tenants
- Retrofit complete: 2013

A few design concepts...
- Hybrid heat pump system with heat reclaim and TES
- Chilled beams
- 100% LED lighting, Task/ambient systems

LIFE CYCLE CONTINUUM

- **EISA 2007 Requirement**: < 40.2 kBtu/sf/yr by 2015
- **Design Team Target**: < 35 kBtu/sf/yr by 2013

BEYOND THE REQUIREMENTS

LEED
- Requirement
- Target

Potable Water Savings
- 20% Requirement
- 40% Target

Solar Thermal
- Requirement: 30% of hot water demand met
- Target: 100% of hot water demand met

CHALLENGE: SPLIT INCENTIVES

Necessary administrative changes
- GSA currently bills based on square footage
- Where does the change need to occur?

Push-back from tenants
- Sometimes design directives come from central agencies
- Perimeter offices!

Lunch time Inspirational Keynote

Andy Walker
National Renewable Energy Laboratory
Recent Trends in ESPC & Renewables

- Several Examples of RE bundled in ESPC
- Performance guarantee - easy to measure RE delivery (IPMVP vol. III)
- Excess electricity/thermal energy sale allowed (new EISA provision)
- FEMP conducts renewable screening for every new ESPC project
- Energy Services Agreement (ESA) – PPA within ESPC
 - Private ownership for tax incentive eligibility
 - ESPC has a 25 year contract authority
 - ESCO/partner retain ownership and take advantage of tax benefits
 - Fixed payment to match guaranteed production

Naval Base Coronado Photovoltaic Project

- 750kW Parking Lot Photovoltaic System
 - Shaded parking for 444 vehicles
 - Provides 3% of peak summer demand
 - $7.7M installed cost, $3.6M CA incentives
 - $228k annual savings, 9.9 yr SPB with incentives
 - M&V: Option A using PVWatts analysis for savings; electric meter installed to monitor performance

29 Palms Photovoltaic Project

- 1.3 MW
 - Completed September 2003
 - Implementation cost = $6.5M
 - Incentives = $4.9M
 - Estimated annual savings over $500k
 - Additional 1 MW project in progress

USCG Baltimore, Maryland Landfill Gas

- Boiler Conversion to LFG Cogeneration Plant
 - 4 MW Electric
 - 8,000 lb/hr Steam
 - 15 year contract length
 - Project Investment : $15.0 million
 - Annual Savings: $2.5 million
 - Offsets 18,000,000 kWh/yr and 71,000 decatherms/yr of Natural Gas
 - Operational: April 2009

DOE Savannah River Site

- New 20 MW wood waste cogeneration plant and two biomass heating plants with local fuel source
- 19 year contract
- Includes performance guarantee and O&M
- Annual Savings of $34 M project cost of $183 M
- Task order signed 5/15/09
- Construction started September 2009, completion expected December 2011
- Important project to meet federal renewable goal/DOE Order 230.2b

Concentrating Solar Thermal (Industrial Process Heat)
Federal Correctional Institution - Phoenix, AZ

- 17,040 square feet of parabolic trough collectors
- 23,000 gallon storage tank
- Installed cost of $950,000
- Delivered 1,161,803 kWh in 1999 (87.1% of the water heating load).
- Saved $77,805 in 1999 Utility Costs
BOP Federal Correctional Institution - Victorville, CA

- Awarded 09/03
- Initial capital investment $5.4M, 19 year term with NORESCO
- Scope includes HVAC controls upgrade, 750KW wind turbine, and 74.5KW PV Carport
- First ESPC financed wind turbine
- SCE provided RE generation financial incentive $4/W
- Escrow account for wind turbine maintenance

Net Zero = EE + RE

![Graph showing Energy Efficiency and Renewable Energy](image)

- Conventional
- Efficient
- Integrated efficiency & renewable
- Net Zero

Strive for 40-70% energy reduction

$1 spent on EE lighting = $6 of PV (an NPS project)

$1 spent on EE refrigeration = $2 of PV (an NPS project)

$1 spent on EE = $2 spent on RE (EIA Press Release Aug 2011)

ARRA/FEMP Assessment

PNNL evaluated EE measures

NREL evaluated RE measures

The New Math

- Net Zero = EE+RE
- Nix the “Net”
- Zero > Net Zero
- Zero = EE + RE + Microgrid

Energy Efficiency

Energy Efficiency

Renewable Energy

Any questions?
Minimum Life Cycle Cost (Net Zero constraint)

Example: Frito Lay North America

REO Financial Results for Seven Net Zero Frito Lay Plants

Net Zero in Renewable Energy Optimization (REO)

Example: Frito Lay North America
Frito-Lay set out to create an environmental learning lab in our Casa Grande plant that would try to make the plant 'near net zero'. Our approach to significantly reduce the use of natural resources and the environmental impact of a manufacturing site has been cutting edge and today marks a major milestone for Frito-Lay and PepsiCo.

October 5, 2011 Al Halvorsen, Senior Director of Environmental Sustainability, Frito-Lay North America.

The "Net" in "Net Zero"

For "Net Zero", sold back to utility equals purchased from utility

Power (kW)

The "Net" in "Net Zero"

Pros:
- Incentive for RE
- Saves Some Fuel (up to a limit)

Cons:
- Limits to Fuel Savings
- Doesn’t save any other utility operating costs
- RE may be curtailed; limits on installations (e.g., 15% in HI)
- Socio-economic problem: foists utility costs on those least able to afford it.

Utility Cost Recovery
- Retail/buy-back spread (c/kWh)
- Stand-by Charges ($/kW/month)

Problems with "Net" Metering

Why these problems with "Net" Zero?

Thermodynamics
Energy Out=Energy In (kWh and Btu)

Transport Phenomena
Instantaneous (Volts and Amps)

Net Zero Solution
• Strategies for “Zero” rather than “Net Zero”
 – Tracking Solar
 – Solar on different orientations (East-South-West)
 – Diversity of RE Measures (Solar, Wind, Etc)
 – Dispatchable RE (biomass, hydro, geothermal, landfill gas)
 – Flexible Grid Layout (circuits) to route power around
 – Isolate Critical Circuits: exercise Demand Control
 – Energy Storage (short and long term, electric and thermal)
 – Micro-grid controls
 - Control requirement: maintain required frequency and voltage levels
 - Grid disconnect and seamless resynchronization
 - Micro-grid start-up (“black start”)
 - Load control (interfaces with SCADA and EMCS)
 - Supply control (optimized operation of DERs)

• Control requirement: maintain required frequency and voltage levels
• Grid disconnect and seamless resynchronization
• Micro-grid start-up (“black start”)
• Load control (interfaces with SCADA and EMCS)
• Supply control (optimized operation of DERs)

“Bundling” is not a bad word.
Win-Win-Win-Win-Win
- Win for agency:
 - gets infrastructure improvements
 - Redundancy, reliability, diversity, security, cost savings
- Win for ESCO:
 - sells more product (twice as much?)
 - Enhance economic value of RE with Microgrid
- Win for Treasury:
 - deeper savings,
 - control energy costs
- Win for the environment
- Carbon emissions
- Win for community
 - Economic development and jobs

Thank You!

Andy Walker
Andy.walker@nrel.gov

Nearly Net Zero Home:
Well insulated
Efficient Appliances
Programmable Controls
Passive Solar
2.7 kW PV: $10,300
30 sf Solar Water Heater: $2,500
Wood Fireplace: $1,500

Energy Conservation Measures
Energy Conservation Measures to Achieve Deep Energy Savings

John Shonder
Oak Ridge National Laboratory

Federal agencies are subject to numerous requirements:

- Comprehensive energy and water evaluations of 25% of covered facilities each year, so that an evaluation of each facility is completed at least once every four years (EISA 432)
- Metering of electricity, natural gas and steam (EISA 434, NECPA)
- 30% reduction in energy use intensity compared with 2003 (EISA 431)

But EISA 433 sets the most stringent goals:

In addition to goal of reducing energy use in all federal buildings by 30% by 2015, all major renovations of existing federal buildings must meet the following targets for reduction in use of fossil fuel:

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>Fossil Fuel Reduction Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>55%</td>
</tr>
<tr>
<td>2015</td>
<td>65%</td>
</tr>
<tr>
<td>2020</td>
<td>80%</td>
</tr>
<tr>
<td>2025</td>
<td>90%</td>
</tr>
<tr>
<td>2030</td>
<td>100%</td>
</tr>
</tbody>
</table>

Technology exists to meet EISA 433 goals and reduce fossil fuel use by 100%:

- Large solar arrays
- Biomass-fueled CHP
- Biogas-fueled CHP
- Even nuclear energy would work
- But in isolation, these are very expensive solutions for retrofits of single buildings or building clusters

Key is to reduce loads:

- Minimize heating and cooling loads
- Minimize plug loads
 - Efficient lighting strategies
 - Efficient appliances
 - Controls
- Minimizing the energy requirements of the building reduces the size and cost of the renewable energy system

Synergies / interactions:

- Lighting strategy
- Heating load
- Energy Use/Renewable Requirement
- Cooling load
- Plug loads
Conservation measures implemented in ESPC, by investment

Deep retrofits require

- Holistic approach considering all energy uses/flows/waste streams in building
- Simulation, careful design and sizing
- Awareness of efficient technologies

FEMP’s Technology Deployment Program

- Focus is on new and underutilized technologies applicable to existing buildings, developed beyond bench-test status, commercially available through a private-sector partner, or already in the commercial market but with minimal market penetration in the federal building sector.

FEMP supports the deployment of emerging and underutilized technologies in a number of ways

- Technology deployment matrix
- Technology Deployment In ESPC Working Group
- Interagency Technology Deployment Working Group
- FEMP Designated and Energy Star Products
- Support to GSA’s Green Proving Ground
- Support to Army Policy for New Technologies and Spec Updates
- Support to Tri-Services and the GSA– Technology Screening and Evaluation Portal
- Training to Ensure Success

FEMP Technology Deployment Matrix

- Tool to assist agencies and ESCOs identify newer and underused energy saving technologies to help meet energy reduction goals.
- Identifies 49 top ranked underused technologies for Federal ESPC/UESC projects.
- Ranked to maximize energy savings impact.
- Provides easy access to application, climate information, resources, case studies, assessments, websites, tools and points of contact to help evaluate applicability in energy improvement projects.
- Currently being evaluated and updated on a regular basis.
- Saves research time and provides better direction in making Energy Conservation Measure (ECM) decisions.

- Available at http://www1.eere.energy.gov/femp/technologies/m/newtechnologies_matrix.html
- Working to make it more visible via a link on NAESCO web page.

Technology Deployment Matrix
"Building Envelope" page

- Seven total technologies including colored paint for heat reflection, green roofs, aerogel insulation, and smart windows
- Similar variety of ideas when other categories selected

Tech Deployment in ESPC Working Group

- Authorized at the Federal ESPC steering committee meeting in November 2010
- Objectives include:
 - Increase the utilization of FEMP Designated Product Specifications (top 25% in efficiency) for selected technologies in ESPC
 - Accelerate deployment of new technologies through ESPC with particular emphasis on use of the FEMP Technology Deployment Matrix
- Expected results include:
 - Best-practice guidance papers that address techniques of enhancing technology deployment in ESPCs, and case studies of successful deployment examples
- Contact Shawn Herrera (202-586-1511), shawn.herrera@ee.doe.gov or Mike Holda (209-835-8150, maholda@lbl.gov) for more information

Technology Deployment in ESPC Working Group - Initiatives

- Periodic "technology" conference calls to increase awareness and educate agency technical POCs, ESCOs, Core team, FFS and PFs on the newest and best available technologies for ECMs
- Support for appropriate opportunities to incorporate demonstrations of EERE technologies in ESPCs
- Risk sharing through the R,R&P matrix and M&V
- Use of the Technology Deployment in ESPC WG as a user community to identify parameters/characteristics in technology testing that would accelerate market acceptance in ESPCs
- Other means as jointly identified by the Working Group

Interagency Technology Deployment Working Group

- Part of the Feds-only Interagency Energy Management Task Force
- Purpose of the working group is to
 - Understand federal agencies technology deployment needs
 - Inform ESCOs, technology developers and vendors of potential market opportunities

Objectives of the Interagency Tech Deployment WG

- Learn what technologies the agencies are interested in and what policies are in place or need to be in place, which will help FEMP understand the market.
- Gather information to inform the technology vendors and developers of potential market opportunities.
- Work with Agencies to develop policies, strategies, and tools to accelerate deployment.
- Focus on identifying technologies that meet requirements for broad Federal acquisition methods, including through UESC and ESPC vehicles
- Communicate results to ESCOs and other stakeholders
Interagency Tech Deployment Working Group

- Next meeting is December 7, 2011 from 10 a.m. to 12:00 p.m., at the DOE Headquarters building
- If you would like to attend in person or remotely, or for more information, please contact Shawn Herrera at: shawn.herrera@ee.doe.gov

FEMP Designated and Energy Star Products

- Federal agencies are required to procure energy-efficient products
- FEMP produces energy efficiency requirements and resources to help Federal buyers comply with Federal requirements while saving energy and costs

Examples of Deployment of New and Emerging Technologies in ESPC

San Diego VA- Ultra Low NOx Turbine Cogen System

USCG Puerto Rico

Investment Grade Audit scope included the demonstration of:
- cool roofs
- variable refrigerant volume (VRV) air-conditioning
- Baseline and post-retrofit conditions were measured before award (for each ECM)
- USCG is funded demonstrations directly
- Helps reduce price, installation and performance risk

Ft. Irwin –HID to T-5 Hi- bay Lighting: Pre-Retrofit
Ft. Irwin – HID to T-5 Hi-bay Lighting: Post-Retrofit

GSA Region 7
Three concurrent ESPC projects with three separate ESCOs leveraged with A/E/R/A:
• LED Lighting
• Induction lighting
• Turbochillers
• Roof integrated PV and cool roofs
• Wind
• Data center efficiency measures

Heating, Ventilation and Air Conditioning Energy Conservation Measures
• HVAC Improvements in 14 Buildings (1,624,269 SF)
• Condenser Cooling Water Loop (Cooled by HRSD effluent) provided to 15 Buildings (1,530,155 SF)
• 2,142 Tons of New-Installed HVAC on Condenser Cooling Water Loop
• 1,400+ Tons of Existing HVAC on Condenser Cooling Water Loop
• 10 miles of Condenser Distribution Loop Piping in Sizes from 2” to 36” diameter
• 0.5 miles of HRSD/Heat Exchange Plant Piping, 36” diameter

FEMP Support For GSA Green Proving Ground Project
• Green Proving Ground is GSA's program to deploy and test sixteen new or underutilized technologies in their facilities.
• After thorough objective evaluation of each technology, reports will be written and findings widely distributed so that these technologies can be best matched with facilities whose needs match their capabilities.
• Successful technologies will be included in the P-100, Performance Based Specifications
• 140 different sites were evaluated to determine which would be the best test cases.
• Evaluation and selection was supported by DOE national labs.

Technologies being evaluated by GSA in the Green Proving Ground Program
• Ground source heat pumps
• Smart windows
• Highly insulated windows
• Daylighting
• PV with solar water heating
• Net metering
• Plug load and behavioral change
Augmenting Building Upgrade Projects with ESPC

- Many agencies dedicate funding to building modernization
 - DOD’s Facilities Sustainment, Restoration and Modernization Program (SRM)
 - Army’s Barracks Upgrade Program
 - Building modernization in GSA, VA and other agencies
- Energy efficiency is not usually the primary focus, but if coupled with efficiency upgrades, these projects could dramatically improve the economics of doing deep retrofits

Four Subtasks Addressing

A. Energy Assessment Protocol (Canada, Finland, France, Germany, USA)
B. Technology Database (Canada, Denmark, Finland, France, Germany, Italy, USA)
C. Best Practice Guidelines for EPCs (Canada, Denmark, Finland, Germany, USA)
D. Energy Concept Adviser Toolkit “EnERGo” (Canada, Denmark, Finland, France, Germany, Italy, USA)

OA. Alexander Zhivov (USACE, USA)
Subtask A: Jorma Pietilainen (VTT, Finland)
Subtask B: Cyrus Nasiri (DOE FEMP, USA)
Subtask C: John Shonder (Oak Ridge National Laboratory, USA)
Subtask D: Hans Erhorn (Fraunhofer Institute of Building Physics, Germany)

Protocol Content

Part I: Energy Assessment Procedure
 - Energy assessment as part of energy management
 - Organizing energy assessment
 - Energy assessment as a means of continuous improvement
 - Assessment procedure
 - After the energy assessment
 - Continuous commissioning

Part II: Energy-saving opportunities
 - Special features of industrial sites
 - Special features of non-industrial sites
 - Typical areas to look for improvement

Glossary
References
APPENDICES A-O

Total: 380 pp
Published by the ASHRAE, Distributed more than 600 copies
Referenced in the ASHRAE Std. 100 “Energy Conservation in Existing Buildings”
Best Practices Guide for ESPC

- Definition Of Energy Performance Contract
- Motivations For Using EPCs for Government Facilities
- Most Common Energy Conservation Measures (ECMs)
- Implementation Process
- EPC Best Practices
 - Policy and Legal Framework
 - Pre-negotiated/Model Contracts
 - Training and Assistance
 - Competition
 - Measurement and Verification
 - Quality Assurance During Project Performance Period
- Continuous Program Improvement
- Conclusions

Where to find Annex 46 results

- Annex46.org
- http://www.annex46.de/impress_e.html

Representative SRM project

- Cluster of five barracks (29,000 sq. ft. each) and dining hall (12,000 sq. ft.), served by central plant providing hot water and chilled water
- Total annual energy use of 3.1 million kWelectricity and 11,476 MMBtu propane
- Typical upgrades using Building Upgrade Program funds cost $29.4 million, result in $27k savings (8% electricity, 7% heating fuel)
- This is a missed opportunity to incorporate energy efficiency upgrades during the renovation process
- How much incremental funding required, and what could be saved?

ECMs included in expanded scope

- Improved building envelope insulation
- Cool roofs
- Reduced air infiltration
- Efficient lighting/day-lighting
- Triple-pane, low E windows
- Insulated doors
- Reduced plug loads, efficient appliances
- With deep (50%-70%) energy reductions achieved, renewable power sources become an affordable option
 - Solar PV
 - Biomass/biogas fired CHP
 - Central solar water heating

Incremental funding can allow buildings to meet EISA fossil fuel reduction targets

- Additional investment of ~$2M for deep savings upgrades + ~$1M for biomass-fueled CHP plant
- Potential annual energy savings = ~$300k plus additional O&M savings
- Simple payback <10 years for the incremental funding
- Alternative financing becomes an attractive option for the incremental portion

Conclusions

- Technology already exists to achieve deep reductions in building energy use
- Key is to consider the building and its energy supply as a whole, and develop an integrated approach
- FEMP has several resources available to support the use of the technologies required to achieve deep energy retrofits

Contacts

- Shawn Herrera
 FEMP Technology Deployment Program
 shawn.herrera@ee.doe.gov
- Cyrus Nasseri
 FEMP ESPC Program
 cyrus.nasseri@ee.doe.gov
- John Shonder
 Oak Ridge National Laboratory
 shonderja@ornl.gov

Report Out Slides from Breakout Groups

Presenters varied

OCCUPANT BEHAVIOR CHANGE SOLUTIONS

<table>
<thead>
<tr>
<th>Barrier</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>It is difficult to quantify energy / cost savings</td>
<td>Agency shares risk; Create incentive to overperform; Stipulate conservative number; Do we need to explicitly measure (i.e. bundle)?</td>
</tr>
<tr>
<td>Not many good examples of "Behavior ECMs"</td>
<td>Create case studies and get the word out; start with low risk process-based solutions (e.g. daytime cleaning)</td>
</tr>
<tr>
<td>Hard to incentivize all occupants of varying cultures, generations, and characteristics</td>
<td>Be more inclusive during design; identify obsolete processes used by tenants that are inhibiting energy savings; tie savings what is "bigger than the individual”; alternative metrics (e.g. jobs preserved)</td>
</tr>
</tbody>
</table>

ANALYSIS AND INTEGRATIVE DESIGN SOLUTIONS

<table>
<thead>
<tr>
<th>Barriers</th>
<th>Votes</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deep savings may not be cost effective over contract term (No $ is available from agencies)</td>
<td>12</td>
<td>• Identify funds available through coordination between energy managers, master planning and capital improvement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Find solutions to channel saved space into funding for Deep Retrofits</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Bulk purchasing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Phased implementation of ECMs</td>
</tr>
<tr>
<td>Lack of info on existing buildings (metered/utility data)</td>
<td>9</td>
<td>GSA needs to store and categorize reports/data into centralized searchable database</td>
</tr>
<tr>
<td>Typical ESPC process looks at individual ECMs</td>
<td>5</td>
<td>Process needs to value bundles of integrated measures</td>
</tr>
</tbody>
</table>
ANALYSIS AND INTEGRATIVE DESIGN SOLUTIONS

<table>
<thead>
<tr>
<th>Barriers</th>
<th>Votes</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laws tell you to save energy, ESPC process demands $ savings</td>
<td>4</td>
<td>Disconnect must be reconciled</td>
</tr>
</tbody>
</table>
| High risk to guarantee deep savings (ability to model new technologies) | 4 | • ESCO engineers have experience and judgment needed
• The tools keep up with new technologies |
| No way to take credit for other savings (O&M, increased productivity, etc.) | 3 | GSA needs to develop a standard way to assign value for these things |

Project Economics

KEY BARRIERS & SOLUTIONS

<table>
<thead>
<tr>
<th>Barriers</th>
<th>Solutions</th>
</tr>
</thead>
</table>
| 1. High Financing Costs (Interest rates) | • Get as close as possible to fed discount rate (.75%)
• Create case for gathering support (appeal to broader issues, i.e. jobs, small biz requirements, etc.)
• Need to align with Skye’s prior efforts |
| 2. No integration w/planned improvement projects | • Provide the information ahead of time (RFP or data sharing)
• ESCO could fold pre-planned improvement into a larger contract |

MEASUREMENT & VERIFICATION

KEY BARRIERS AND POSSIBLE SOLUTIONS

<table>
<thead>
<tr>
<th>BARRIER</th>
<th>SOLUTION</th>
</tr>
</thead>
</table>
| 1. Uncertainty/variability of how building is operated on an on-going basis after installation | • Treat O&M as ECM and have ESCO handle it
• Have O&M contractor handle it
• Need to clearly specify all performance vs. operation responsibilities |
| 2. Cost/level of effort/complexity for whole-building M&V (keeping track of adjustment factors, performing sub-metering, client understanding of M&V) | • Perform robust M&V for 1st year
• Have option A, B for following years
• Pull M&V out of agencies and put it in FEMP |
| 3. Lack of consistency across GSA offices/agencies/regions | • Apply standardization
• Have common M&V methodology across similar projects
• Get center of competence for M&V (e.g. move to FEMP) |
MEASUREMENT & VERIFICATION
KEY BARRIERS AND POSSIBLE SOLUTIONS

<table>
<thead>
<tr>
<th>BARRIER</th>
<th>SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor, absent or incorrect baseline performance data</td>
<td>• Improve baseline efforts</td>
</tr>
<tr>
<td></td>
<td>• Have FEMP approve baseline; allowESCO to submit before price proposal</td>
</tr>
<tr>
<td>Current methods do not account for existing equipment not working well in making baseline adjustments</td>
<td>• Need to be able to capture savings associated with O&M improvements that happen as part of new installation</td>
</tr>
<tr>
<td>Guarantee is based on equipment O&M being done effectively but if ESCO doesn’t own O&M, they might be at risk</td>
<td>• Have ESCO be responsible for O&M</td>
</tr>
<tr>
<td>Must verify performance of integrated measures that might be difficult to accurately model/estimate savings</td>
<td>• Provide documentation of energy modeling assumptions, inputs, outputs for FEMP to review/accept for reasonableness</td>
</tr>
<tr>
<td></td>
<td>• Do not guarantee full estimated savings - degrade</td>
</tr>
</tbody>
</table>

Process
KEY BARRIERS

- **Project requirements**: Clear project requirements and proficient region/site teams are not established early enough
- **Eligible savings**: Is there a threshold for the amount of savings required to justify a deep retrofit? Major confusion/disagreement on what can be counted as eligible savings
- **ESCO Selection**: ESCO selection process takes too long
- **Agency building data**: Lack of available building data, and agency understanding/proficiency around data/design needs
- **Additional risk**: There is a significant cost/risk to the additional analysis required for successful deep retrofits
- **Significant project delays**: Regions/sites are not always incentivized to adhere to aggressive schedules.

SOLUTIONS

<table>
<thead>
<tr>
<th>Solution</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clarify eligible savings</td>
<td>• Define eligible sources of payment: O&M, utility rebates, PPA, leasibility (tenant satisfaction surveys), absenteeism</td>
</tr>
<tr>
<td></td>
<td>• Define how to demonstrate differential</td>
</tr>
<tr>
<td></td>
<td>• Clarify how to address elevated baselines</td>
</tr>
<tr>
<td></td>
<td>How much it woulda cost if they woulda done it)</td>
</tr>
</tbody>
</table>

Delivery Process

Moving forward....

Are regions fully onboard with deep retrofits?

Should processes be Centralized vs. Regionalized?

Proceed in replicable batches of 30?

Process
SOLUTIONS

<table>
<thead>
<tr>
<th>Solution</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESCO selection</td>
<td>Get all 32 project ESCOs selected in 90 days</td>
</tr>
<tr>
<td></td>
<td>Three step process</td>
</tr>
<tr>
<td></td>
<td>1. One letter of notification to all 16 ESCOS, with project data (has as-built drawings, experience level of region, etc.), ESCOs mark those projects that they are interested in.</td>
</tr>
<tr>
<td></td>
<td>2. Then team (region/central?) chooses top 3 ESCOs for each job</td>
</tr>
<tr>
<td></td>
<td>3. Final selection through oral interview</td>
</tr>
</tbody>
</table>

** Guarantees fair opportunity, but should/does this process support GSA objective of diverse ESCO participation?
Process Solutions

<table>
<thead>
<tr>
<th>Solution</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduce project delays</td>
<td>Midterm review in IGA, with clear criteria + follow up</td>
</tr>
<tr>
<td></td>
<td>Create urgency to adhere to aggressive timeframes through GSA rebate/incentives</td>
</tr>
</tbody>
</table>

GSA Challenge Goals

- Demonstrate best practices for maximizing overall ESPC project energy savings;
- Advance progress toward EISA goals
- Accelerate deployment of underutilized and renewable technologies.
- Further expose GSA regions to new DOE ESPC IDIQ contract process and resulting improvements in ESCO selection
- Identify and understand processes necessary to get to net zero energy
- Identify structural, contractual and technical impediments

GSA Challenge Framework

- **Site Selection**: GSA selected 30-35 buildings for competition across multiple regions
- **Award Process**: Buildings to be awarded with DOE’s streamlined competition process
- **Recognition**: Projects to be evaluated by a panel of independent experts to identify and recognize exceptional performance in a number of technical categories
 1. absolute energy savings of pre-retrofit energy use
 2. progress towards Federal Government goals for energy, water, fossil fuel, renewable energy, and sustainability
 3. financial and technical creativity
 4. ability to extend best practices to other Federal buildings.

And More What’s Next?

- Change in Procurement Practice
- Change in Budget Practice
- Change in Measurement
- Criteria for Selecting Vendors
- Performance Contracting by Team Negotiation
- Change in Fee Structures
- Integration with Buildings Operations, Not Just at the Hand-Off, but for Years

Timeline for ESPC Task Order Development to Award

- **Best-Expedited Schedule**
 - 12 steps
 - 147 days
 - Project planning (30-60 days)
 - Preliminary assessment (15-30 days)
 - ESCO selection
 - Notice of Opp.
 - Select ESCO
 - Evaluate PA
 - Send NOIA
 - IGA & Final Proposal
 - Site/Agency Review
 - Final Reviews, Negotiations & Award

- **Longer Schedule**
 - 12 steps
 - 246 days
 - Project planning (90 days)
 - Preliminary assessment (60 days)
 - ESCO selection
 - Notice of Opp.
 - Select ESCO
 - Evaluate PA
 - Send NOIA
 - IGA & Final Proposal
 - Site/Agency Review
 - Final Reviews, Negotiations & Award

ESPC Net Zero Energy Challenge Overview

Kevin Kampschroer
Kinga Porst
GSA
ESPC Challenge

- 30-35 Buildings
- 17 mio sqft
- 100,000 – 800,000 sqft
- $150 mio potential project size

Where the Buildings Are

Boston, MA
New Bedford, MA
Hartford, CT
Buffalo, NY
New York, NY
Newark, NJ
Philadelphia, PA
Miami, FL
Tampa FL
Louisville, KY
Indianapolis, IN
Cleveland OH
Cincinnati, OH
Chicago, IL
Overland, MO
Lincoln, NE
Omaha, NE
St. Louis, MO
Austin, TX
New Orleans, LA
Albuquerque, NM
Oklahoma City, OK
Auburn, WA
Tacoma, WA
Bothell, WA
Anchorage, AK
Washington, DC
Silver Spring, MD
Lanham, MD
The General Services Administration, Office of Federal High Performance Green Buildings (OFHPGB), Rocky Mountain Institute (RMI) and the Federal Energy Management Program (FEMP) have begun to identify ways to modify and expand the Energy Savings Performance Contract (ESPC) process to attain deeper energy savings on retrofits of existing buildings. In this effort, GSA, RMI, and FEMP will hold a workshop with Super ESCO teams to introduce the Net Zero Energy Retrofit Challenge and to identify current barriers and solutions to achieving greater savings on all ESPC projects.

“Buildings that deliver more comfort and productivity with less energy and stronger economics are the way of the future. In fact, I live in one. At Rocky Mountain Institute, we see great market potential to infuse net zero energy buildings with energy service performance contracting through the Net Zero Renovation Challenge,” said Amory B. Lovins, who is RMI's cofounder, Chairman, and Chief Scientist.

Table of Contents

Overview of Charrette: ... 2
ESCO Industry snapshot: .. 2
Definition of Net Zero Energy .. 4
Description of Net Zero Approach: ... 4
GSA ESPC Net Zero Renovation Challenge 5
Barriers to deep energy retrofits in ESPC’s: 5
Deep Energy Retrofit Case Studies: ... 7

Appendix:
- Agenda and attendees
- Standard ESPC process presentation and summary
- Map of Boulder and key events
- Press Release about the Challenge (dated 10/20/2011)
- Deep Energy Retrofits - a process white paper from RMI
Overview of Charrette:
GSA, RMI, and FEMP will convene a meeting of Federal contract negotiation and contract management personnel with selected Energy Services Company (ESCO) providers to improve the ESPC process and expand the use of ESCOs to finance installation of energy saving technologies and practices in existing buildings. The charrette will provide an open, collaborative and non-competitive environment for engineers, project managers and contracting experts from government and the 16 ESCOs that have been awarded contracts under the Department of Energy’s IDIQ to identify barriers and solutions to raising the bar on the minimum level of savings an ESPC provides to government agencies.

ESCO Industry snapshot:
GSA’s vision is to achieve a Zero Environmental Footprint. GSA will eliminate its impact on the natural environment and use its government wide influence to reduce the environmental impact of the federal government. ESPC projects at GSA sites have not historically achieved true deep energy retrofits (greater than 50% energy savings from current operations). There is evidence that deep energy retrofits improve the economics of efficiency, and achieve bigger energy savings and other benefits at equal or lower cost, while producing much larger energy savings (more than 50%) than conventional, shallow retrofits.¹

Lighting improvements and Building Automation upgrades were implemented in over 200 projects (>75%) whereas renewable energy systems were only implemented in 71 projects (26%) and building envelope improvements in 37 buildings (14%). (Source: FEMP http://www1.eere.energy.gov/femp/pdfs/do_awardedcontracts.pdf)

Figure 1: DOE IDIQ ESPC Awarded Projects by ECM (FY 1998 – FY 2011)

Aside from lighting improvements, ESPC’s are not directly targeting reducing building loads. By reducing heating and cooling loads, envelope measures could reduce the size of the HVAC equipment required, resulting in larger energy savings than are typically seen.

¹ Rocky Mountain Institute, RetroFit Depot™, Retrofit Industry Needs Assessment Study, Public White Paper
Federal Requirements for GSA Buildings
The Energy Independence and Security Act of 2007 (EISA 2007) established energy management goals and requirements. Today, 97% of GSA's greenhouse gas (GHG) emissions come from energy consumption in Federal buildings and leased space. GSA will increase its investment in energy and water conservation projects across its inventory of owned Federal buildings in order to reduce facility energy intensity to 48,926 BTU/GSF by FY 2020. This amounts to a 37.5% reduction from the FY 2003 baseline of 78,282 BTU/GSF.

![Diagram: ECM's implemented in ESPC, by investment](image)

Figure 2: ECM’s included in ESPC’s by investment. (Source: John Shonder, Oak Ridge National Laboratory, 2011)

<table>
<thead>
<tr>
<th>SCOPE 1 & 2 GHG TARGET</th>
<th>FY 10</th>
<th>FY 11</th>
<th>FY 12</th>
<th>FY 13</th>
<th>FY 14</th>
<th>FY 15</th>
<th>FY 16</th>
<th>…</th>
<th>FY 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>EISA Mandated Energy Reduction Goals (BTUSF reduced from FY 2003 base year)</td>
<td>15%</td>
<td>18%</td>
<td>21%</td>
<td>24%</td>
<td>27%</td>
<td>30%</td>
<td>hold</td>
<td>…</td>
<td>hold</td>
</tr>
<tr>
<td>GSA Planned Energy Intensity Reduction (BTUSF reduced from FY 2003 base year)</td>
<td>15%</td>
<td>18%</td>
<td>21%</td>
<td>24%</td>
<td>27%</td>
<td>30%</td>
<td>31.5%</td>
<td>…</td>
<td>37.5%</td>
</tr>
<tr>
<td>Mandated Renewable Electricity Goals (Percent of electricity from renewable sources)</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>7.5%</td>
<td>hold</td>
<td>hold</td>
<td>hold</td>
<td>hold</td>
<td>hold</td>
</tr>
<tr>
<td>GSA Planned Renewable Electricity Use (Percent of electricity from renewable sources)</td>
<td>10%</td>
<td>12%</td>
<td>14%</td>
<td>16%</td>
<td>18%</td>
<td>20%</td>
<td>22%</td>
<td>…</td>
<td>30%</td>
</tr>
<tr>
<td>GSA Scope 1 & 2 Reduction Target (Reduced from FY 2008 base year)</td>
<td>7%</td>
<td>10%</td>
<td>13%</td>
<td>17%</td>
<td>20%</td>
<td>21.3%</td>
<td>22.8%</td>
<td>…</td>
<td>28.7%</td>
</tr>
</tbody>
</table>

Figure 3: Comparison of EISA mandated energy reduction goals and GSA planned energy intensity reduction. Also, a comparison of mandated renewable electricity goals and GSA planned renewable electricity use. (Source: http://www.gsa.gov/portal/content/185129)

Furthermore, E.O. 13514 reduction targets do not allow for adjustments to accommodate increases in the GSA inventory of covered buildings. E.O. 13514 Scope 1 & 2 emissions reduction targets measure tons of carbon emissions against a fixed baseline. The energy consumption of any new workspace must be offset by additional energy reductions elsewhere.
Typical ESPC procurement process

The typical ESPC procurement process is provided in two documents in the appendix. During the workshop, we will be asking for thoughts and recommendations on how to streamline the process.

Definition of Net Zero Energy

For the purpose of this competition, Net Zero Energy will be defined as a building that produces (and exports) at least as much renewable energy as it uses in a year, when accounted for at the site. This does not take into account source generation factors. Acceptable forms of renewable energy used to meet this goal include onsite PV, solar hot water, low impact hydroelectric, wind, biomass, ethanol, biodiesel.\(^2\) Renewable Energy Credits (RECs) are not acceptable to meet net zero energy for the sake of the Challenge. Efficiency is heavily weighted as a solution above renewable generation.

Description of Net Zero Approach:

In the deep energy retrofit process, it is important to identify the right steps to take, and equally important to perform these steps in the right order. Following this process will enable project teams to realize the most cost effective energy reductions:

1. **Define the specific end-user needs**

 What are the needs and services required by the building occupants? Understand this first, rather than jumping right to the equipment needed to provide the service.

2. **Understand the existing building structure and systems**

 Understand and assess the current state of the building. What needs are not being met? Why not?

3. **Understand the scope and costs of planned or needed renovations**

 What systems or components require replacement or renovation for non-energy reasons? What are the costs or interruptions to service or occupancy? Identify these planned renovations early, as it may be possible to combine this with a desired energy efficiency retrofit to optimize the overall return on investment.

4. **Reduce loads**

 Select measures to reduce loads: First, through passive means (such as increased insulation). Then, by specifying the most efficient non-HVAC equipment and fixtures

5. **Select appropriate and efficient HVAC systems**

 After reducing loads as much as possible, consider what HVAC system types and sizes are most appropriate to handle the drastically reduced loads.

6. **Find synergies between systems and measures**

 Seek synergies across disciplines and find opportunities to recover and reuse waste streams. Through this exercise, you can often realize multiple benefits from a single design decision.

7. **Optimize controls**

 After the most appropriate and efficient technologies have been selected, the focus should shift to optimizing the control strategies.

8. **Incorporate Renewables**

 Once the energy consumption has been drastically reduced, it is appropriate to investigate and size renewable energy options that are well suited to the climate and site.

9. **Realize the intended design**

 Tune the owner’s project requirements (OPR), implement measurement and verification (M&V) and continuous commissioning to ensure full realization of the intended design.

\(^2\) This definition is consistent with the NZE definitions put forth by NREL (http://www.nrel.gov/docs/fy06osti/39833.pdf) and generally accepted in the industry EXCEPT for the inclusion of RECs.
GSA ESPC Net Zero Renovation Challenge

GSA is committed to using the ESPC process to achieve deep energy use reductions in their buildings. Accordingly, GSA has selected 30-35 buildings across the US for improvements as part of the GSA ESPC Net Zero Renovation Challenge. Using the standard award process for the Department of Energy's ESPC IDIQ contract, GSA intends to award multiple Task Orders for energy efficiency projects in these buildings. The intent is to award Task Orders to as many ESCOs as possible.

In order to encourage ESCOs to go beyond the energy savings seen in typical ESPC projects, the challenge will provide nominal prizes and awards to the most innovative projects. An overall award will be given to the ESCO with the most cumulative points and will be awarded additional projects through GSA. ESCO’s will also be awarded for the highest achievement in each category. GSA reserves the right to use past performance as a criteria for any new Task Order awards. The criteria that will be used to evaluate the Task Orders for the purposes of the separate competition are as follows:

1. Absolute energy savings
2. Progress towards EISA/GSA goals
3. Financial creativity
4. Technical creativity
5. Replicability/Applicability
6. Design process and analysis

Barriers to deep energy retrofits in ESPC’s:

These barriers coupled with opportunities or solutions will be discussed more during the breakout group sessions of the charrette.

1. Analysis and Integrative Design
 - Lack of time to perform energy analysis that takes into account integrative design.
 - Some risk for the ESCO to take on this level of analysis before contract is awarded.
 - Agency personnel may lack confidence in savings predictions derived from simulation models.
 - Agencies are sometimes resistant to new technologies or approaches.

2. Financing
 - Achieving deep energy savings often requires a substantial contribution of appropriated funds, which may not be available.
 - Agencies are sometimes reluctant to sign the long-term contracts (>20 years) necessary to achieve deep savings.
 - Agencies sometimes question individual conservation measures with very long payback periods, despite the fact that these are bundled together with other, shorter-payback ECMs into an integrated project
 - Financiers prefer Option A M&V, which may not be the customer’s preference in a project with interactive ECMs.

3. Delivery process
 - Agency uncertainty over how to develop and manage hybrid projects that integrate building upgrade projects and ESPC.
 - Agency reluctance to go “outside the box”.

4. Behavioral change
 - Has great potential, but can be difficult to quantify benefits.
 - Agencies are often skeptical of the benefits.
 - Can be difficult to measure savings.
5. Long term and affordable Measurement and Verification

- Uncertainty over how to measure the performance of projects with interactive ECMs.
- Potential for increased risk.
Deep Energy Retrofit Case Studies: Retrofit Projects with Net Zero Energy Target

WWF Headquarters, Netherlands
World Wide Fund for Nature (WWF) renovated a former 1950’s agricultural laboratory as its headquarters. It is a Carbon Neutral Building, it is (almost entirely) self-sufficient and achieves an A++ rating at the Energy Performance of Buildings Directive (EPBD) energy label due to the use of triple glazed windows with louvers on the south elevation that ensure efficient isolation and heat resistance. Extensive use of renewable energy sources such as building integrated photovoltaic panels, solar thermal collectors, 6-well geothermal system and a backup biomass system allows building to go net zero. The organic blob at the center has a mud ceiling laced with a capillary system of tubes that channel water to regulate heating and cooling. The building uses only natural ventilation, and cool ground water is used for cooling the building before flushing toilets.

General Information
Location : Zeist, the Netherlands
Size : 40,900 ft2 (3,800 m2)
Completed : 2008
Type : Office Building
Renovation Cost: $5.4 million (€ 4 million)

Photo credit: RAU Architects

IDeAs Z-Squared Design Facility
IDeAs (Integrated Design Associates) has transformed a commonplace building - a 60’s era concrete, windowless bank - into its new headquarters to build one of the first commercial buildings in the United States to be designed to a “Z2” energy efficiency goal; that is, net zero energy, zero carbon emissions. Energy efficiency strategies such as skylights in the ceiling, occupancy sensors to turn off lights in unoccupied spaces, high efficiency office equipment and innovative automatic controls to minimize plug loads, natural ventilation supplemented by radiant heating and cooling in the floors, insulation with high R-values, high performance window glazing with high visible light transmittance (with super low-emissivity, and electro-chromic glass that is tied to a photo-sensor) helps to reduce the energy demand. A ground-source heat pump and a 28 kW solar PV system in the building are enough to offset peak demand load.

General Information
Location : San Jose, California
Size : 7200 ft2 (669 m2)
Completed : 2007
Type : Office Building
Renovation Cost : $4,100,000
Premium for NZE : 6.3% of the total cost

Photo credit: IDeAs
Wayne Aspinall Federal Building Modernization

92 year-old Wayne Aspinall Federal Building and U.S. Courthouse is planned by GSA to be the country's first Net Zero site energy historic building. Building will feature energy efficient strategies such as florescent lighting with wireless controls and storm windows with a solar film covering that will reduce the demand on heating and cooling. A geothermal heating and cooling system, a 115 kW roof and canopy mounted photovoltaic, DC micro-grids and variable refrigerant flow systems are proposed in the plans. The project aims to achieve a LEED Platinum certification and GSA expects to save roughly $16,000 in annual energy costs after the renovation is completed, as well as reduce peak energy demand by 125 kilowatts.

General Information

Location : Grand Junction, Colorado
Size : 41,562 ft2 (3,800 m2)
Completion Date: January 2013
Type : Federal Office Building
Renovation Cost : $7,000,000 - $12,000,000

Retrofit Projects with Low Energy Target

Byron Rogers Federal Office Building

A GSA building located in Denver is amidst a comprehensive retrofit that is projected to save over 60% from existing energy operating costs. The project will comply with historic preservation and asbestos abatement while improving the building envelope, window performance, and access to daylight. The project will optimize heating and cooling processes with a unique chilled beam and heat recovery approach that transfers heat around the building to capitalize on the thermal differential caused by its solar orientation. This project will meet EISA 2007, EO 13423, and EPAct 2005 requirements.

General Information

Location : Denver, Colorado
Size : 494,156 ft2, 18 stories
Completion Date : 2013
Type : High-rise Office Building
Renovation Cost : TBD
EUI : 90 kBtu/sf pre-retrofit, < 35 kBtu/sf projected

Photo credit: LAWRL Design, LLP.

Photo credit: HOK
Indianapolis City-County Building (CCB)
This city owned building recently completed a retrofit to save 46% energy cost savings using an ESPC. Steam use will be reduced by over 93%. The project included a geothermal heat exchange system, heat recovery for the central plant, data center, and exhaust air, modified air handlers, as well as solar thermal and solar PV systems.

General Information

<table>
<thead>
<tr>
<th>Location</th>
<th>Indianapolis, IN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>731,119 ft² (Gross), 28 stories</td>
</tr>
<tr>
<td>Completion Date</td>
<td>2011</td>
</tr>
<tr>
<td>Type</td>
<td>High-rise Office Building</td>
</tr>
<tr>
<td>ROI</td>
<td>9.3%</td>
</tr>
<tr>
<td>EUI</td>
<td>113 kBtu/sf pre-retrofit (2008), < 60 kBtu/sf projected</td>
</tr>
</tbody>
</table>

Edith Green-Wendell Wyatt Federal Office Building
In 2009, the GSA began a deep energy retrofit to save 30% of energy use, with 30% solar thermal generation - leading to a 55% fossil fuel reduction. The project is pursuing LEED Platinum certification. 255kW PV array on roof provides 10% of building's energy and provides a canopy for rainwater collection and reuse. The distinctive façade will include transparent aluminum and a vegetated wall shading the first three floors and incorporating rainwater harvesting. The project includes green leases for tenants, a variety of tenant requirements and regulated tenant improvements.

General Information

<table>
<thead>
<tr>
<th>Location</th>
<th>Portland, OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>517,000 ft², 17 stories</td>
</tr>
<tr>
<td>Completion Date</td>
<td>2013</td>
</tr>
<tr>
<td>Type</td>
<td>Federal Office Building</td>
</tr>
<tr>
<td>Renovation Cost</td>
<td>$135 million</td>
</tr>
<tr>
<td>EUI</td>
<td>Reduction from 80 kBtu/sf to 33-38 kBtu/sf (estimated)</td>
</tr>
</tbody>
</table>

Photo credit: C. Resources Inc.

Photo credit: PAE Engineers Inc.
Charrette Agenda
Net Zero Energy Retrofit Challenge

Location:
The charrette will be conducted at RMI offices at 1820 Folsom St., Boulder CO, 80302. (303) 245-1003

Workshop objectives:
To increase the minimum level of savings that an ESPC can provide to government agencies.

To achieve this objective, the workshop agenda has been structured to:

- Identify barriers and solutions to improving the Energy Savings Performance Contract (ESPC) process
- Expand the use of ESPCs
- To discuss criteria for the net zero energy challenge, identify and understand processes necessary to get to net zero energy and highlight key strategies such as cutting-edge energy saving technologies, best practice measurement and verification (M&V) efforts.

Agenda:
Thursday, October 27th, 2011

<table>
<thead>
<tr>
<th>Time</th>
<th>Session Title</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30am</td>
<td>Introductions and welcome (RMI)</td>
<td></td>
</tr>
<tr>
<td>9:00am</td>
<td>Net Zero Energy Retrofit Challenge (GSA)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Goals, Rules, Logistics, Requirements, and Evaluation Criteria</td>
<td></td>
</tr>
<tr>
<td>9:45am</td>
<td>Initial input from attendees (RMI to moderate)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Describe your company’s experience with deep retrofits</td>
<td></td>
</tr>
<tr>
<td>10:30am</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>10:45am</td>
<td>Net Zero Energy Concepts (RMI)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High-level concepts to get to net zero. Industry requirements and context. Definition of net zero.</td>
<td></td>
</tr>
<tr>
<td>11:30am</td>
<td>Example Retrofit Project (RMI)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-3 case studies that have achieved 60%-70% energy savings. Description of project, ECM’s, process and economics.</td>
<td></td>
</tr>
<tr>
<td>12:00pm</td>
<td>Lunch & Inspirational Keynote (Andy Walker, NREL)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lunch will be provided.</td>
<td></td>
</tr>
<tr>
<td>1:00pm</td>
<td>Energy Conservation Measures (FEMP)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cutting edge energy conservation measures and underutilized technology necessary to achieve net zero energy and discussion of the interactive effect of the measures. Next steps for FEMP.</td>
<td></td>
</tr>
<tr>
<td>2:00pm</td>
<td>Barriers and Solutions Breakout groups (Moderated by RMI)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction to the breakout groups</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Barriers and solutions to deep energy retrofits and net zero projects. Switch groups mid way through (3:45pm).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Analysis and Integrative Design</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Financing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Occupant behavior and workplace cultural</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Long term and affordable Measurement and Verification</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Delivery process (including FEMP procedures, contracting)</td>
<td></td>
</tr>
<tr>
<td>5:30pm</td>
<td>Adjourn</td>
<td></td>
</tr>
<tr>
<td>6:30pm</td>
<td>No host dinner:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Mediterranean Restaurant, 1002 Walnut Street, Boulder CO 80302, (303) 444-5335</td>
<td></td>
</tr>
</tbody>
</table>
Friday, October 28th 2011

8:30am Welcome and reconvene (Moderated by RMI)

8:45am Report out from breakout groups
 20 minutes per group, including comments, thoughts and Q&A from the larger group.

10:15am Continue discussion on streamlining the process
 Stemming from the delivery process breakout group findings.

11:15am Recap of the ESCO Challenge, next steps and timeline (GSA)
 Roles and expectations

11:45pm Wrap up, closing remarks (GSA)

12:00pm Adjourn

1:30pm Optional tour of NREL-RSF Net Zero Energy facility
 Golden, Colorado

Attendees:

<table>
<thead>
<tr>
<th>Name</th>
<th>Firm</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Kevin Kampschroer</td>
<td>GSA</td>
<td>Director, GSA Office of Federal High Performance Green Buildings</td>
</tr>
<tr>
<td>2 Kinga Porst</td>
<td>GSA</td>
<td>Sustainability Advisor, GSA Office of Federal High Performance Green Buildings</td>
</tr>
<tr>
<td>3 John Simpson</td>
<td>GSA</td>
<td>Program Manager, GSA Office of Federal High Performance Green Buildings</td>
</tr>
<tr>
<td>4 Kevin Myles</td>
<td>GSA Region 7</td>
<td>Energy Manager, GSA R7</td>
</tr>
<tr>
<td>5 Mark Ewing</td>
<td>GSA</td>
<td>Director, GSA Energy Division</td>
</tr>
<tr>
<td>6 Beth Lemanski</td>
<td>GSA</td>
<td>Director, Portfolio Analysis, Office of Portfolio Management</td>
</tr>
<tr>
<td>7 Susan Damour</td>
<td>GSA Region 8</td>
<td>Regional Administrator, GSA R8</td>
</tr>
<tr>
<td>8 Scott Conner</td>
<td>GSA Region 8</td>
<td>Program Management Officer, GSA R8 PBS/Office of the Regional Commissioner</td>
</tr>
<tr>
<td>9 Tim Unruh</td>
<td>DOE/FEMP</td>
<td>Program Manager for the DOE FEMP</td>
</tr>
<tr>
<td>10 Cyrus Nasseri</td>
<td>DOE/FEMP</td>
<td>DOE FEMP</td>
</tr>
<tr>
<td>11 Skye Schell</td>
<td>DOE/FEMP</td>
<td>Supervisor, DOE FEMP</td>
</tr>
<tr>
<td>12 Deborah Kephart</td>
<td>DOE/Golden Field Office</td>
<td>Contracting Officer, DOE Golden Field Office</td>
</tr>
<tr>
<td>13 Randy Jones</td>
<td>DOE/Golden Field Office</td>
<td>ESPC/Technical Assistance Project Officer, DOE Golden Field Office</td>
</tr>
<tr>
<td>14 Michael Norton</td>
<td>Army</td>
<td>Branch Chief, U.S. Army Corps of Engineers</td>
</tr>
<tr>
<td>15 Will Irby</td>
<td>Army</td>
<td>ESPC Project Manager, U.S. Army Corps of Engineers</td>
</tr>
<tr>
<td>16 Barbara Osterkamp</td>
<td>Army</td>
<td>U.S. Army Corps of Engineers</td>
</tr>
<tr>
<td>17 Margaret P. Simmons</td>
<td>U.S. Army Engineering & Support Center</td>
<td>Counsel, U.S. Army Corps of Engineers</td>
</tr>
<tr>
<td>18 Robert ‘Hutch’ Hutchinson</td>
<td>RMI</td>
<td>Managing Director, Research and Collaboration</td>
</tr>
<tr>
<td>19 Victor Olgyay</td>
<td>RMI</td>
<td>Principal, Buildings Team</td>
</tr>
<tr>
<td>20 Cara Carmichael</td>
<td>RMI</td>
<td>Senior Consultant, Buildings Team ESCO lead</td>
</tr>
<tr>
<td>21 Kendra Tupper</td>
<td>RMI</td>
<td>Senior Consultant, Buildings Team</td>
</tr>
<tr>
<td>22 Roy Torbert</td>
<td>RMI</td>
<td>Analyst, Buildings Team</td>
</tr>
<tr>
<td></td>
<td>Andy Walker</td>
<td>NREL</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td></td>
<td>John Shonder</td>
<td>ORNL</td>
</tr>
<tr>
<td></td>
<td>Don Gilligan</td>
<td>NAESCO</td>
</tr>
<tr>
<td></td>
<td>Nicole A Bulgarino</td>
<td>Ameresco</td>
</tr>
<tr>
<td></td>
<td>Jason Vass</td>
<td>Ameresco</td>
</tr>
<tr>
<td></td>
<td>Jim Edwards</td>
<td>Chevron Energy</td>
</tr>
<tr>
<td></td>
<td>Bryon Krug</td>
<td>Clark Energy Group</td>
</tr>
<tr>
<td></td>
<td>Morgan Blackwood</td>
<td>Clark Energy Group</td>
</tr>
<tr>
<td></td>
<td>Eric B. Lawton</td>
<td>ConEdison</td>
</tr>
<tr>
<td></td>
<td>Christopher Abbuehl</td>
<td>Constellation</td>
</tr>
<tr>
<td></td>
<td>Rodney Frazier</td>
<td>Constellation</td>
</tr>
<tr>
<td></td>
<td>Raquel Steffes</td>
<td>FPL Energy Services</td>
</tr>
<tr>
<td></td>
<td>David Russell</td>
<td>FPL Energy Services</td>
</tr>
<tr>
<td></td>
<td>Steve Craig</td>
<td>Honeywell</td>
</tr>
<tr>
<td></td>
<td>James Kiriazes</td>
<td>Honeywell</td>
</tr>
<tr>
<td></td>
<td>Andrew Morton</td>
<td>JCI</td>
</tr>
<tr>
<td></td>
<td>Steven W. Spanbauer</td>
<td>JCI</td>
</tr>
<tr>
<td></td>
<td>Bobbie L. Griffin</td>
<td>Lockheed Martin</td>
</tr>
<tr>
<td></td>
<td>John Rizzo</td>
<td>Lockheed Martin</td>
</tr>
<tr>
<td></td>
<td>Pat Clark</td>
<td>McKinstry</td>
</tr>
<tr>
<td></td>
<td>Roger Huggins</td>
<td>McKinstry</td>
</tr>
<tr>
<td></td>
<td>Marilyn Fine</td>
<td>Noresco</td>
</tr>
<tr>
<td></td>
<td>John Saams</td>
<td>Noresco</td>
</tr>
<tr>
<td></td>
<td>John Martin</td>
<td>Pepco Energy Services</td>
</tr>
<tr>
<td></td>
<td>Alicia, DeCesars</td>
<td>Pepco Energy Services</td>
</tr>
<tr>
<td></td>
<td>Roger Jenkins</td>
<td>SAIC</td>
</tr>
<tr>
<td></td>
<td>Bill Steen</td>
<td>SAIC</td>
</tr>
<tr>
<td></td>
<td>Kevin Vaughn</td>
<td>Schneider Electric</td>
</tr>
<tr>
<td></td>
<td>Jeff Coles</td>
<td>Schneider Electric</td>
</tr>
<tr>
<td></td>
<td>Richard Wolfert</td>
<td>Siemens</td>
</tr>
<tr>
<td></td>
<td>Art Thomspn</td>
<td>Siemens</td>
</tr>
<tr>
<td></td>
<td>David Hayden</td>
<td>Trane</td>
</tr>
<tr>
<td></td>
<td>Jody Wilkens</td>
<td>Trane</td>
</tr>
<tr>
<td></td>
<td>Nate Maniktala</td>
<td>ME Group</td>
</tr>
<tr>
<td></td>
<td>Pete Jefferson</td>
<td>ME Group</td>
</tr>
</tbody>
</table>
02 FEMP SUGGESTED ESPC MILESTONE PLAN

Energy Savings Performance Contract (ESPC) procurement requires planning and management, and delays in ESPC awards result in forgone energy savings. Savings from DOE Indefinite delivery/indefinite quantity (IDIQ) ESPC projects can be accumulated sooner through a timely award process. The DOE IDIQ provides two approaches to energy service company (ESCO) selection, depending on project requirements: Approach A allows a multi-step down selection based on qualifications (SBQ) prior to a Preliminary Assessment (PA) by one ESCO. Approach B requires a Preliminary Assessment from two or more interested ESCOs after evaluation and down selection of all interested ESCOs based on qualifications and further consideration. A longer schedule may be required for Energy Savings Agreements (ESAs) or other more technically complex projects.

Milestones for ESPC Task Order Development to Award Process

<table>
<thead>
<tr>
<th>Months</th>
<th>Acquisition & Project planning (30 - 60 days)</th>
<th>ESCO selection (90 - 180 days)</th>
<th>TO-RFP (15-35 days)</th>
<th>IGA & Final Proposal (180 – 270 days)</th>
<th>Site/Agency & GFO Review (30-60 days)</th>
<th>Final Reviews, Negotiations, and Award (45 - 60 days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Work w/FFS</td>
<td>Notice of Opp.</td>
<td>Total</td>
<td>Energy baseline development</td>
<td>Construction approach</td>
<td>12.5 mos.</td>
</tr>
<tr>
<td>3-6</td>
<td>Form Acq. Team</td>
<td>Down selection (A or B)*</td>
<td>More</td>
<td>M&V approach</td>
<td>Site/Agency & GFO Review</td>
<td>** Longer Schedule 24 mos.</td>
</tr>
<tr>
<td>6-9</td>
<td>Request PF</td>
<td>Request further info and schedule Discussion**</td>
<td>More</td>
<td>Construction approach</td>
<td>Energy baseline development</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Inform DOE & Conduct PA(s)*</td>
<td>Evaluate finalist(s)</td>
<td>More</td>
<td>M&V approach</td>
<td>Site/Agency & GFO Review</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Send NOITA</td>
<td></td>
<td>More</td>
<td>Construction approach</td>
<td>Final Reviews, Negotiations, and Award</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>More thorough baseline requires many months</td>
<td></td>
<td>More</td>
<td>M&V approach</td>
<td>Final Reviews, Negotiations, and Award</td>
<td></td>
</tr>
</tbody>
</table>

*Approach A: Down select to one or more; Approach B: Down select to two or more
(In approach A, there will be only one ESCO performing a Preliminary Assessment)

** For a one-step down selection, include discussion questions and further info as a reference in original NOO and specify if discussion will be written or oral.

Approximate Staffing Needs for an ESPC Procurement Project

1. To award task order:
 a. Energy/facility manager: 2–5 full-time employee (FTE) months
 b. Contracting office: 1-3 FTE months

2. Construction, commissioning, and post-installation M&V and throughout life of contract:
 a. Mostly energy/facility manager
 Time needed varies widely based on project complexity and site requirements
 b. Utilize typical agency construction/acceptance process
3. Contract administration through first-year M&V
 a. Approximately 1 FTE month

THE DOE DETAILED PROCUREMENT MILESTONE TOOL

A sample DOE detailed procurement milestone tool is found on the next page, followed by instructions for using the tool and a completed sample of the tool.
Right-click the figure below and select “Worksheet Object, Open” to work with this schedule in Microsoft Excel. Save the file as an Excel spreadsheet in an appropriate network folder.

ESPC Milestone Planning

Phase 1 - Project Planning

<table>
<thead>
<tr>
<th>Activity</th>
<th>Timeline</th>
<th>Completion Dates</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site requests PF through FFS</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>FFS initiates renewable screening with Core Team</td>
<td>0 0</td>
<td>1/0/1900 1/0/1900</td>
<td>0 0</td>
</tr>
<tr>
<td>Golden Field Office (GFO) assigns a PF</td>
<td>7 14</td>
<td>1/7/1900 1/14/1900</td>
<td>7 14</td>
</tr>
<tr>
<td>GFO assigned PF works with site/facility to establish a Acquisition Team (AT)</td>
<td>15 38</td>
<td>1/22/1900 2/21/1900</td>
<td>22 51</td>
</tr>
</tbody>
</table>

Phase 2 - Selecting the ESCO - preliminary

<table>
<thead>
<tr>
<th>Activity</th>
<th>Timeline</th>
<th>Completion Dates</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO issues NOO to all 16 ESCOs (and includes post-down select info that will be required)</td>
<td>1 3</td>
<td>1/28/1900 4/4/1900</td>
<td>27 62</td>
</tr>
<tr>
<td>ESCOs submit responses to NOO</td>
<td>20 30</td>
<td>2/17/1900 4/4/1900</td>
<td>27 62</td>
</tr>
<tr>
<td>AT ESCO first downselection</td>
<td>20 30</td>
<td>3/8/1900 5/4/1900</td>
<td>68 124</td>
</tr>
</tbody>
</table>

Phase 2 - Selecting final ESCO

<table>
<thead>
<tr>
<th>Activity</th>
<th>Timeline</th>
<th>Completion Dates</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESCOs submit further info and/or respond to oral interviews (approach A)</td>
<td>5 30</td>
<td>3/14/1900 6/6/1900</td>
<td>74 156</td>
</tr>
<tr>
<td>AT reviews further information and down selects to one ESCO for PA (approach A)</td>
<td>10 30</td>
<td>3/24/1900 7/6/1900</td>
<td>186</td>
</tr>
<tr>
<td>ESCO downselection notice to unsuccessful offerers</td>
<td>1 3</td>
<td>3/25/1900 7/9/1900</td>
<td>85 189</td>
</tr>
</tbody>
</table>

Phase 3 - Negotiation & Award

<table>
<thead>
<tr>
<th>Activity</th>
<th>Timeline</th>
<th>Completion Dates</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESCOs complete IGA and prepare Final Proposal</td>
<td>15 30</td>
<td>4/30/1900 10/30/2001</td>
<td>120 300</td>
</tr>
</tbody>
</table>

Notes

Note #1: Core Team function is to provide renewable/advanced efficiency technology and financial reviews.

Note #2: CoGen should be treated like a renewable and be exempt from 18-month limit. The 18-month limit should have a formal case-by-case exemption process. If not, people will try to meet the timeline even if ill-advised.

PF - Project Facilitator

FFS - Federal Finance Specialist

GFO - Golden Field Office
BLANK DETAILED MILESTONE INSTRUCTIONS

1. Right click the Microsoft Excel Object on the next page and select “Open.”
2. Once in Excel, save the file as an Excel worksheet in an appropriate network location.
3. Close the file and reopen in Excel from the network location where you just saved it.
4. Enter the start date of the project in cell D1 (colored in green); this date should be the same day you will request a Project Facilitator from your Federal Financing Specialist.
5. Do NOT edit the dates below row 3; they are automatically calculated based on the “min” and “max” timeframe you will enter into columns B and C (these cells are locked so that you cannot accidentally change them).
6. Worksheet cells with a small red marker in the upper right corner indicate helpful comments—hover over the red marker to see the comment.
7. Change the project steps text in column A (Activity) as needed to tailor the sheet to your project.
8. If you need to delete steps, _delete the entire row_ so all formulas will still work correctly.
9. If you need to add steps:
 a. Add an entire new row.
 b. Select/highlight the row above as well as the new row and use the “Fill, down” command to copy the date formulas to the new row. Alternatively, you can copy the cells from the row above to the new row you have inserted.
 c. Change the non-date cells as needed.
10. To change the calendar day duration of the minimum or maximum calendar days to complete an activity, edit the number in column B and/or C (Min or Max). This will automatically change the end date for the task.
11. The responsibility matrix for the activities is found in columns I through O. Edit this as necessary if it will help you communicate roles to the team members.

The worksheet is protected so that you will not accidentally edit calculated cells. If you would like to edit these cells then unprotect the sheet using the “Review” tab and selecting “unprotect”. There is no password required.
EXAMPLE, COMPLETED DETAILED DOE ESPC PROCUREMENT MILESTONE (EXCEL TOOL)

Activity	**Timeline**	**Completion Dates**	**Cumulative**
Enter Start Date Here———>: 7/1/2011 | | | |

Please read comment

Phase 1 - Project Planning

Site requests PF through FFS 0 7/1/2011 7/1/2011 0 0
FFS initiates renewable screening with Core Team 0 0 7/1/2011 7/1/2011 0 0
Golden Field Office (GFO) assigns a PF 7 14 7/8/2011 7/15/2011 7 14
GFO assigned PF works with site/facility to establish a Acquisition Team (AT) 15 38 7/23/2011 8/22/2011 22 51
AT establishes ESCO NOO & preliminary selection criteria 5 10 7/28/2011 9/1/2011 27 60

Phase 2 - Selecting the ESCO - preliminary

CO issues NOO to all 16 ESCOs (and includes post-down select info that will be required) 1 3 7/29/2011 9/4/2011 28 63
ESCOs submit further info and/or respond to oral interviews (approach A) 20 30 8/18/2011 10/4/2011 47 93

Phase 2 - Selecting final ESCO

ESCOs submit further info and/or respond to oral interviews (approach A) 5 10 9/13/2011 11/2/2011 72 155
AT reviews further information and down selects to one ESCO for PA (approach A) 10 30 9/23/2011 1/5/2012 82 184
ESCO downselection notice to unsuccessful offerers 1 3 9/24/2011 1/8/2012 83 187
Site issues Preliminary Assessment (PA) solicitation to ESCO finalist (approach A) 1 3 9/24/2011 1/8/2012 83 187
ESCO notifies GFO of intent to proceed to PA 1 3 9/25/2011 1/11/2012 84 190
Contractor(s) conduct site visits to identify any ECMs in addition to those provided in solicitation 5 30 9/30/2011 2/10/2012 89 219
GFO receives questions from contractors 5 30 9/30/2011 2/10/2012 89 219
Site receives PA 5 15 10/5/2011 2/25/2012 94 234
AT convenes and reviews PA results (approach A) 10 30 10/15/2011 3/26/2012 104 265
CO issues NOITA & Draft TO RFP 10 35 10/15/2011 3/31/2012 104 270
Phase 3 - Negotiation & Award

ESCO begins IGA 15 30 10/30/2011 4/30/2012 119 299
ESCO completes IGA and prepare Final Proposal 165 240 4/12/2012 12/26/2012 281 535
AT / CO obtains executive or board approval for final proposal 30 30 5/12/2012 1/25/2013 311 564
Final Proposal meeting with contractor 5 10 5/31/2012 2/18/2013 330 587
Formal negotiation period 20 50 6/10/2012 4/19/2013 349 638
Finalize task order (includes all reviews and approvals) 10 15 6/30/2012 4/24/2013 359 653
Sign Task Order 1 1 7/1/2012 4/25/2013 360 654

Total Weeks 51.4 93.4
Total Months 12.0 21.8

Note #1: Core Team function is to provide renewable/advanced efficiency technology and financial reviews.

Note #2: CoGen should be treated like a renewable and be exempt from 18-month limit. The 18-month limit should have a formal case-by-case exemption process. If not, people will try to meet the timeline even if ill-advised.

PF - Project Facilitator
FFS - Federal Finance Specialist
GFO - Golden Field Office
The ESPC Process in Five Phases

Phase 1: Acquisition Planning
- Talk with your FEMP Federal Financing Specialist
- Assemble agency/site acquisition team
- Consider project motivations and site needs

Phase 2: Energy Service Company (ESCO) Selection and Preliminary Assessment
- Send “Notice of Opportunity” to all 16 Super ESPC ESCOs
- Review qualifications of ESCOs
- Review ESCO responses and down-select/choose one ESCO to submit Preliminary Assessment
- Review Preliminary Assessment
- Issue Notice of Intent to Award

Phase 3: Audit, Negotiation, and Award
- Agency specifies requirements in Task Order RFP
 - Investment-Grade Audit
 - Final Proposal
 - Final Negotiations
 - Task Order Award

Phase 4: Construction
- Review of Design and Construction Package
 - Construction
 - Inspections
 - Commissioning
 - Acceptance of Completed Project

Phase 5: Performance Period
- Operations and Maintenance per Task Order
- Measurement and Verification
- Invoice and Payments
- Closeout
WASHINGTON – Today, U.S. General Services Administrator Martha Johnson announced GSA’s Net Zero Renovation Challenge. The new initiative challenges the private sector to improve the energy performance of federal buildings through the use of Energy Service Performance Contracts (ESPCs), aiming for net-zero energy use. ESPCs are a way to leverage private funding for building retrofits.

"In Executive Order 13514, the President challenged government to lead by example in environmental, energy and economic performance. Now GSA is challenging the private sector to partner with us to go above and beyond what has been done before in federal building renovations. We want the private sector to provide us with their most innovative, cost effective solutions to maximize energy and cost savings," said GSA Administrator Martha Johnson.

Under an ESPC, a private-sector energy services company develops and installs energy improvements such as energy efficient lighting, heating, ventilation and air conditioning systems, and more efficient roofs, walls, doors and windows. The building owner then repays the energy company for the capital expenditure over a maximum 25-year period from the resulting energy savings. After the capital expenditure is repaid, the building’s owner then realizes the energy savings for the life of the building.

"Federal buildings are built to last. ESPCs provide the federal government with decades of lower utility bills without an upfront investment. The approach just makes good sense, especially when budgets are tight," said Johnson.

In the challenge unveiled today, 16 energy services companies who already provide ESPCs to federal agencies will now present the best retrofit plans for approximately 30 Federal buildings across the country. These projects will be evaluated by a panel of independent experts based on energy savings, financial and technical innovation and applicability to other federal buildings. The winning entries will be awarded the ESPCs, as well as additional ESPCs in the future.

President Obama’s Executive Order 13514 on Leadership in Environmental, Energy, and Economic Performance requires agencies to meet a number of energy, water, and waste reduction targets in existing federal buildings. The Executive Order also directs that the design of all planned new federal buildings beginning in 2020 achieve net-zero energy use by 2030.

As the federal government’s workplace solutions provider, the U.S. General Services Administration works to foster an effective, sustainable and transparent government for the American people. GSA’s expertise in government workplace solutions include:
• Effective management of government assets including more than 9,600 government-owned or leased buildings and 215,000 vehicles in the federal fleet, and preservation of historic federal properties;
• Leveraging the government’s buying power through responsible acquisition of products and services making up approximately 14 percent of the government’s total procurement dollars;
• Providing innovative technology solutions to enhance government efficiency and increase citizen engagement; and,
• Promoting responsible use of federal resources through development of governmentwide policies ranging from federal travel to property and management practices.